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ABSTRACT

The quality of image generation has reached impressive lev-
els. Advanced text-to-image models have become amazingly
good at creating objects, depicting actions with high preci-
sion. However, despite significant progress in image genera-
tion, the quality of generated faces remains a critical factor for
users. Even the most advanced text-to-image diffusion mod-
els struggle to generate high quality faces consistently. This
highlights the importance of estimation of face quality in gen-
erated images as one of the most important metric to assess.
In this paper, we propose a hybrid architecture comprising
of attention-based Vision-Transformer along with Efficient-
Net to capture intrinsic face deformations present in image
generation models. We also conduct a comparative analy-
sis of state-of-the-art diffusion models for face quality esti-
mation including DALL-E, Flux, Stable Diffusion and Fire-
fly. Furthermore, we show that our proposed pipeline can be
plugged with image generation models to effectively correct
the poor quality faces in generated images through automated
re-generations.

Index Terms— Face Quality Estimation, Image Quality
Assessment, Diffusion Models, Vision Transformers

1. INTRODUCTION

Advancements in text-to-image generation using diffusion
models have made it possible for generated images to be used
in multiple applications, e.g. in creative industries such as
designing, advertising, media houses, social media banners,
posts and virtual reality. With rapid advancements, the focus
is shifting towards more practical use-cases of these models
in a wide variety of applications. Even though these mod-
els are capable of generating unimaginable objects, beautiful
creative images and compositions, generating high-quality
human faces still remains a critical issue. Most advanced dif-
fusion models do a decent job in generating large-size portrait
images. However, these models fail miserably to generate
multiple faces in group pictures or faces with appropriate
expressions, people performing different actions, and faces
with small face crops in generated images. Major problems
associated with the faces generated by text-to-image diffusion
models include pixelation, distortions, unnatural-look, faces

with exaggerated shape or size, facial features skewed or bent
at unusual angles, asymmetrical facial features, unrealistic
skin textures, inconsistent lighting and shadows, incomplete
facial features and abnormal facial expressions. Observing
facial features such as symmetry, skin texture, clear eyes,
nose or lips positions can make it easier to distinguish be-
tween a bad and a good quality face. However, this manual
assessment is highly subjective, as it may be influenced by
variations in age (wrinkled faces), ethnicity, lighting condi-
tions, environmental conditions, image source, surrounding
noise or other unforeseen scenarios. With this work, our aim
is to detect poor quality faces in generated images by calcu-
lating a Face Quality Score, thereby flagging images below a
certain threshold score, which makes it possible to correct the
faces automatically. Through this work, we propose:

1. A hybrid network "FaceQ Transformer’ utilizing pyra-
mid VIT architecture along with EfficientNet to capture
the global and local deformation patterns present in a
face crop.

2. An automated pipeline to compare the quality of faces
generated by various text-to-image diffusion models.

3. A dataset of 30,000 *bad quality’ face-crops to advance
the research in measuring the quality of faces generated
with text-to-image diffusion models.

2. RELATED WORK

Image quality assessment has been at the center stage due to
its importance in both image and video generation. There has
been extensive research in estimating the overall quality of
generated images [1, 2]. Inception score [3] and FID [4] are
some of the popular objective metrics to measure the overall
quality of generated images. Although these metrics focus
on the global quality of an image, they overlook specific por-
tions such as faces and hands [5] within the image. In the
domain of image forensics and deepfakes, there has been sig-
nificant research in detecting bad faces introduced by factors
such as motion blur and image editing. Face quality estima-
tion has also been a focus in applications such as face recog-
nition, where the primary focus involved looking at the sym-
metry of detected faces, lighting conditions, and noise sur-
rounding face crops in video frames or images [6, 7, 8]. Fur-



thermore, there have been some notable efforts on quality as-
sessment of faces and overall images generated using Gener-
ative Adversarial Networks (GANSs) [6, 9, 10], In prior works
[11, 12], the authors have utilized the forward and backward
processes of DDPMs to perturb facial images and quantify
the impact of these perturbations on the corresponding im-
age embeddings for purpose of quality prediction. Similarly
in [13], the authors have measured the classifiability based
on the allocation of the training sample feature representa-
tion in angular space with respect to its class center and the
nearest negative class center. They utilize internal network
observations during the training process to predict the qual-
ity of unseen samples. Although this work is closely related
to our research, we have observed that the deformation tex-
tures or properties are different in text-to-image generation
using diffusion models differ significantly from those found
in poor-quality camera-captured images or images generated
through GANs. Researchers have also attempted to solve
the low-quality generation of faces using diffusion models in
[14, 15, 16, 17]. For instance, in [17], the authors have intro-
duced a Face Score based on in-painted facial regions within
diffusion-generated-images, assuming that the in-painted face
quality will be worse than the original image. We have ex-
perimented with the introduction of in-painted face crops as
markers of low-quality face crops, but this approach does not
scale well in terms of detection across all generative mod-
els since the noise and distortion patterns vary across differ-
ent diffusion models. In [18],the authors have generated a
dataset of faces for DALL-E, Midjourney and Stable Diffu-
sion models, pointing out some of the key face distortions
observed in diffusion models. It has become common to use
negative prompts based on Classifier Free Guidance (CFG)
technique[19] to limit poor-quality image generations. Al-
though this approach is effective, it is limited by the model’s
capability to generate high quality faces. Some work in es-
timating or verifying the quality of generated faces has been
done using VLLMs (VQA) [20, 21, 22]. On doing a com-
prehensive analysis of measuring the subjective and objective
quality of bad face crops with VLLMs, we found this tech-
nique to be ineffective (internVL, Table 1). Even the most ad-
vanced VLLM models such as GPT-4V, GPT-4o, Intern-VL,
LLaVA with different backends (mistral, llama, phi, vicuna),
fail miserably at estimating the quality of generated faces.

3. DATASET CREATION

3.1. Need for a new dataset

Dataset plays a crucial role in steering the output of a machine
learning model. Although good datasets for faces covering
diverse profiles, orientations and variations [23, 24, 25] are
available, most of them are designed predominantly for the
task of facial recognition and to assess the quality of camera-
captured faces. It is important to note that for datasets involv-

Fig. 1. First row : Examples of poor-quality crops generated
by diffusion models. These are labeled as ‘bad face’ crops.
Second row : ‘good face’ crops from Adobe Stock and im-
ages generated by Firefly. These good-quality face samples
contain low-light, side-face profile, different facial orienta-
tion and occlusions on face making it different from datasets
having Face Recognition task in focus. Third row : Distor-
tions (Twirl, Zig-Zag, Ripple, Shear, Wave) generated using
Adobe Photoshop on ‘good face’ crops (from Adobe Stock
and FFHQ).

ing good-quality faces for face recognition and related tasks,
side profiles or low-light face crops may be labeled as poor-
quality face examples. However, for prompt-based image
generation, users may specifically ask to generate side-profile
faces or extreme scenario faces, making these face crops es-
sential. In [26], the authors introduced a large-scale dataset
of demographically annotated Al-generated faces, including
real faces, faces from deepfake videos, and faces generated
by GANs and diffusion models. With our work, we intro-
duce a new dataset called "Labeled Bad Faces’ (LBF) captur-
ing different kinds of distortions in faces generated by various
state-of-the-art diffusion models.

3.2. Dataset Source

We collected two classes of face crops labeled as "bad faces’
and ’good faces’. For *good faces’, we filtered approximately
60,000 samples sourced from Adobe Stock using labels ’peo-
ple’ and "human’, and extracted close to 15,000 samples from
FFHQ dataset[27]. To cover extreme scenarios such as side-
profile and low-light conditions, we also filtered an additional
10,000 samples sourced from Adobe Stock labeled specifi-
cally as ’side faces’ and ’low light faces’. This brought the
total sample of ‘good faces’ to 85,000. Collecting ‘bad face’
samples was a critical task, requiring human annotators to in-
vest significant time and resources in accurately labeling bad
crops. We have employed three methods to collect ‘bad face’
samples:

1. We applied a synthetic data generation strategy to dis-
tort *good faces’ sourced from Adobe Stock and FFHQ
dataset. We altered 45,000 *good face’ crops using dif-
ferent image distortion techniques such as Twirl, Zig-
Zag, Ripple, Shear and Wave. These distortions were
applied randomly to 30-70% area in the face crops, as



shown in Fig. 1.

2. We generated 15,000 samples of ’bad faces’ by utiliz-
ing a custom face generation GAN trained on FFHQ
face dataset with low number of epochs. Extracting
outputs from different stages of training this GAN by
early stopping produced the required low-quality faces.

3. We observed that although we can capture most of the
high-frequency distortions with synthetic generation
and GANSs, a lot of low-frequency distortions cannot
be captured by above strategies. To capture them, we
have manually annotated and verified close to 30,000
samples of face crops generated by diffusion models
such as Firefly, StableDiffusionXL[28], StableDiffu-
sion 2.1, StableDiffusion 1.5, Bytedance SDXL and
Segmind SSD-1b [29] trained on LORA optimization
to extend bad textures of the face crops.

To ensure accurate face-cropping, we used RetinaFace [9]
based on the Resnet50 architecture with a threshold of 0.7.
This relatively low threshold was chosen to account for the
extreme distortions present in some faces generated by dif-
fusion models. We have also discarded blurred faces by fil-
tering with the variance of the Laplacian, and excluded False
Positives, such as crops having animals or other non human-
face entities, using object detection models. To the best of
our knowledge, no such dataset is available publicly which
consists of a large number of human annotated bad-quality
faces. With this work, we release a carefully-curated dataset
of 30,000 human-annotated bad-quality faces (LBF).

3.3. Test Dataset

To test our model, we prepared a list of 189 generated images
by each of Stable-Diffusion 3, Dall-E 3, FLux-Dev, Flux-
schnell and Firefly, totaling to 945. These images were gen-
erated using prompts carefully designed to account for geo-
graphic, ethnic, racial, gender, and environmental diversity.
This approach ensures comprehensive testing of the robust-
ness of our model. These prompts were crafted using prompt
engineering with ChatGPT, and the same prompt can be fed to
GPT to scale to a larger number of prompts if needed. Using
this initial set of prompts, we generated close to 2,000 face
crop samples to test our model.

4. ARCHITECTURE DETAILS

To benchmark the results, we train a vanilla Resnet34 ar-
chitecture to validate the initial results on our test dataset.
We measure the accuracy for model trained on dataset with-
out synthetically distorted samples and with synthetically dis-
torted samples. We also fine-tune

1. EfficientNetB1 architecture,
2. VITBI16 to capture global patterns in the image,

Pvt_v2_b5 feature extractor

Fig. 2. Hybrid Pyramid-VIT and Efficient-net architecture
with best results on most of diffusion models.

3. Pyramid VIT v2 with added design, including (a) linear
complexity attention layer, (b) overlapping patch em-
bedding, and (c) convolutional feed-forward network.

We Introduce a new model architecture Face Quality Trans-
former (FaceQ Transformer, Fig. 2) which comprises of Pyra-
mid VIT [30, 31] facial feature extractor fused with Efficient-
Net based local feature extractor to capture local and global
distortion patterns present in the face crops. We show that this
architecture outperforms all the previous methods and archi-
tectures. The illustrated results on various state-of-the-art dif-
fusion model by our models are depicted in Table 1. Vanilla
Resnet Shown in this table is trained without using ’bad faces’
created by image distortions (Twirl, Zig-Zag, Wave, Ripple
etc.). We observe that using the image distortions improves
the result by 2% on our test dataset.

5. RESULT AND DISCUSSION

Table 1. F1 Score of FaceQ Transformer On Test dataset

Model SD3 | Dalle | Flux-s | Flux-d | Firefly | All
FaceQNet 0.54 | 0.64 0.76 0.85 0.87 | 0.73
FaceQan 0.63 | 0.70 0.71 0.75 0.77 | 0.71
CLIB-FIQA 0.56 | 0.70 0.79 0.92 0.89 | 0.77
[ InternVL-2.5 (26B) [[ 0.64 | 0.65 | 0.64 [ 0.65 | 0.79 ]0.69 |
Ours
(Vanilla Resnet34) 0.82 | 0.86 0.92 0.92 0.80 | 0.86
Ours
(Resnet34) 0.83 | 0.85 0.89 0.90 0.86 | 0.88
Ours
(EfficientNetB1) 0.84 | 0.89 0.93 091 0.90 | 0.90
Ours
(VITB16) 0.86 | 0.90 0.88 0.89 0.87 | 0.88
Ours
(PyramidVIT) 0.86 | 0.87 0.91 0.92 0.84 | 0.89

Ours
(FaceQTransformer) || 0.90 | 0.91 0.91 0.93 0.88 | 091

5.1. Model performance

The plot in Fig. 5 represent the scores given by our FaceQ
Transformer for 5 different state-of-the-art text-to-image dif-



F1 Score (x100)

Fig. 3. (a) First figure (left) shows the accuracy of text-
to-image diffusion models in generating high-quality faces
(Flux-dev and Firefly generate more than 80% of ’good face’
crops). (b)Accuracy and F1 Score of Face Quality Trans-
former Model on images generated by different diffusion
models.

fusion models. These results closely align with human label-
ing since we observe that the quality of labels annotated by a
team of three human annotators match with that of the result
by our model. Fig. 3a Shows the percentage of good-quality
face crops generated by various diffusion models. Fig. 3b
shows the accuracy and F1-score of our pipeline considering
human annotations as the ground truth. We achieve greater
than 88% accuracy, 0.83 F1-score and greater than 0.91 AUC
ROC for all the individual state-of-the-art text-to-image mod-
els. In our results we show that Firefly and Flux-dev are of
superior quality for generating high-quality faces having ac-
curacy of over 80%.

Some faces in images generated by diffusion models are
ambiguous, making it difficult for even a team of three hu-
mans to determine their quality. We have omitted these highly
ambiguous face-crops (less than 3% of the overall crops) for
the face-quality models evaluation. We also observe that the
texture of images generated by Dall-E 3 is very different from
that of the other text-to-image models as Dall-E 3 generate
more artistic faces making it hard to evaluate.

Some limitations of our model include estimating quality
for very low-light or invisible face and heavily occluded face
(' more than 60-70% of occlusion). We observe that our model
struggles to classify these cases with high accuracy.

5.2. Comparison with other models

To show the effectiveness of our approach we compare our
pipeline with other state-of-the-art models for face qual-
ity estimation. We compare the results of FaceQNet[32],
FaceQan[6] and CLIB-FIQA[33]. Although these models
are mostly tailored specific to face recognition and similar
utilities of face quality estimation but we wanted to com-
pare the results to verify that these models are performing
good for distorted and straight faces. We also show the face
quality assessment by InternVL-2.5 26B parameter model
using visual question answering. We show that our approach
is best for classifying the quality of bad faces generated by

diffusion models. We also show the comparative results de-
picting Fl-score of different face-quality estimation models
on test dataset described in section 3.3. We have also fine-
tune different different pre-trained models like efficient-net,
ViT-B16, Pyramid-ViT v2 on our training dataset consisting
of "good quality’ and ’bad quality’ faces. We show that our
proposed Face Quality Transformer (Fig 2) model consist-
ing of a fusion of Pyramid-ViT architecture and efficient-net
model outperforms all the previous models and is more robust
across text-to-image diffusion models.

6. ABLATION STUDY

6.1. Improving the existing DDPM model with Face clas-
sification network

We demonstrate the effectiveness of our approach by feed-
ing the face quality estimation network as a loss function to a
face generation diffusion model with a simple attention-based
Unet architecture. We observe that using our face classifica-
tion network as a feature loss with DDPM for face genera-
tion improves the face generation diffusion model by 6% on
a sample set of 512 generated face crops. We setup a dif-
fusion network for unconditional face generation from the
"good quality’ faces available with us (close to 85,000). We
first train a model with simple MSE loss, and for the second
experiment, we feed our face quality estimation classifier as a
loss function to the DDPM model. The updated loss function
is shown below. To evaluate the quality of faces generated by
diffusion model we generate random 512 images by DDPM
trained with MSE loss and DDPM trained with face quality
loss. We show that DDPM with face quality loss has signifi-
cant improvement in the quality of generated faces Fig.4 (left
vs right).

Etota] = ['MSE +A- Efeature (D

where:

© Luse = + Zf\il (y; — §;)° is the Mean Squared Error
loss,

* Lieawre 18 the Face Quality Network based feature loss
(we feed Face Quality Network with Resnet34 archi-
tecture to extract face quality features) ,

» The weighting parameter A has been experimentally set
to 0.1 for optimal performance.

The feature 10Ss Liearure is defined as:

| N
Lieaure = N Z lo(yi) — ¢(3:)13 2
i=1

where: ¢(-) represents the feature extraction function of
a Face Quality Estimation network, and || - ||3 denotes the
squared ¢5-norm (Euclidean distance) between the feature
representations.



Fig. 4. Sample Distribution of faces generated by Vanilla face
Diffusion Model with MSE loss (Left) and with face quality
loss (Right). Observe the quality difference separated by dot-
ted line.

6.2. Correction Pipeline and User acceptance

We conducted an additional experiment to iteratively re-
generate images k number of times if the images generated
were of poor-quality. This experiment involved 100 prompts
for image generation and 3 annotators to annotate the quality
of images based on faces-generated. We observed an im-
provement of the perceived quality of generated images by
11.7% for second automated re-generation (k=2) and 14%
by third automated re-generation (k=3). This experiment
was done for Firefly images where the initial acceptance of
images by annotators was approximately 80%.

7. CONCLUSION

In this work we propose Face Quality Transformer, an ap-
proach to address one of the most critical problems to classify
the poor-quality of faces generated by text-to-image diffusion
models. We demonstrate that our algorithm is able to de-
tect poor-quality faces across different open and proprietary
text-to-image diffusion models. We also propose a dataset
”Labeled Bad Faces” which will help advance the research in
classifying the bad quality of faces generated by diffusion and
non-diffusion models having structurally distorted faces. We
show that this face quality estimation network can be plugged
as a loss function to improve existing face generation mod-
els. We also highlight the effectiveness of our approach by
improving the quality of bad faces by 14% in just two more
re-generation steps. With our work, we can also objectively
rank various text-to-image models on their ability to generate
good-quality images containing high-quality faces.
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