
VIEWPOINT-DEPENDENT 3D VISUAL GROUNDING FOR MOBILE ROBOTS
SUPPLEMENTARY MATERIAL

1. MODEL ARCHITECTURE OF EDA AND EDA+VP

We used EDA [1] in our experiments to compare the accu-
racy with the existing model and also created a new model,
EDA+VP. Fig. 1 shows an overview diagram of the two mod-
els. In contrast to the EDA model, the EDA+VP model has
an additional module for processing viewpoint information,
framed in orange dashed line.

EDA model: EDA uses the decoupling module (Fig.1 upper
part) to process text by dividing it into words and categorizing
them into five attributes: “main object”, “auxiliary object”,
“attribute”, “pronoun”, “relationship”. The decoupling mod-
ule is based on existing text analysis tools [2, 3]. It takes the
text itself and text feature T ′ (detail of T ′ will be described
later) to generate Decoupled text position L and Decoupled
text feature t. L represents the position of words within the
text for each attribute, while t captures the characteristics of
these words.

EDA integrates text and visual features to effectively
identify objects in a scene (Fig. 1 middle part). It extracts text
feature T and visual features V using pretrained RoBERTa [4]
and PointNet++ [5], respectively, then applys cross-attention
and updates both features to T ′ and V ′. Meanwhile, V ′

undergo top-k feature selection and are combined with the
detected objects feature B from the Group-free [6] detector
through cross-attention. Then it falls into the object decoder
(Fig. 1 right part) and make the proposal feature. This de-
coder uses the same architecture as the BUTD-DETR [7].

The proposal feature is processed by two MLPs and a pre-
diction module, each serving a distinct role. The first MLP
generates position feature Lpred and the second MLP gener-
ates semantic feature o. These feature are used to calculate
the position alignment loss and semantic alignment loss. Po-
sition alignment loss is used to learn which words in the text
correspond to each object, while semantic alignment loss is
used to learn the semantic similarity between text and object
features. The prediction module, which utilize Group-free [6]
architecture, predicts the bounding box of the target object.
Please refer to the EDA paper for further details on methods.

EDA+VP model: The newly created EDA+VP model incor-
porates viewpoint as an additional input (Bottom-left part of

Table 1. Detection results in ScanRefer and ScanRefer+VP
models.

Methods Text type Acc@0.25IoU Acc@0.5IoU
Direct text 86.28 66.30

ScanRefer+VP Relational text 85.26 66.02
overall 85.37 66.03

Direct text 84.98 60.22
ScanRefer Relational text 85.46 59.44

overall 84.95 60.21

Fig. 1). After generating the viewpoint feature, the model
concats them with the visual feature V before applying cross-
attention with the text feature T . These combined features are
then passed through an MLP. By inputting viewpoint into vi-
sual features, EDA+VP enables viewpoint-aware object iden-
tification.

2. ADDITIONAL EXPERIMENT

2.1. Object detection result

In relation to Sec. 4 Q2 of our paper, we conducted an ad-
ditional experiment to evaluate the performance of the detec-
tion module alone for the ScanRefer and ScanRefer+VP mod-
els. The reason for this experiment is that while both models
are trained end-to-end using the proposed dataset, ScanRefer
does not take viewpoint as input during training. We hypoth-
esized that this limitation might negatively affect the perfor-
mance of its detection module. Tab. 1 shows the percentage
of detected bounding boxes with an IoU of 0.25 or higher and
0.5 or higher among all GT bounding boxes. We found that
both models can detect about 80% of the bounding boxes with
an IoU of 0.25 or higher and about 60% with an IoU of 0.5 or
higher. This result show that there is a slight difference in the
accuracy of the detection module between the ScanRefer and
ScanRefer+VP models, but the performance gap is at most
2% based on the Acc@0.25IoU metrics.

2.2. Qualitative results

Fig. 2 illustrates the qualitative results of object identifica-
tion using both the ScanRefer and ScanRefer+VP. ScanRe-
fer model often fails to identify the correct objects without
considering the robot’s relative left-right position, leading to
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Fig. 1. The overview diagram of EDA and EDA+VP. EDA+VP incorporates a module enclosed by an orange dashed line to
input viewpoint.
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Fig. 2. Qualitative results. Compare the bounding box output by the ScanRefer and ScanRefer+VP with the ground truth (GT)
bounding box of the target object. The left part shows the identification results for Direct description, while the right part shows
the results for Relational description. Incorrect identification samples are highlited with a red square.



many unsuccessful identifications. On the other hand, Scan-
Refer+VP succeeds in identifying the correct object when the
text requires consideration of the viewpoint. However, tasks
that require taking into account the positional relationships
between objects (Relational description) often lead to failures
even with ScanRefer+VP (Fig. 2 right).

3. DATASET DETAILS

Text templates: We used a total of 80 different templates for
text generation. As shown in Fig. 3 of our paper, these tem-
plates are divided by text type. There are 24 templates for di-
rection text, 12 for distance text in Direct description, and 44
for Relational description. This number of templates, com-
bined with the 34 different object class names inserted into
them, helps to prevent multiple similar expressions from be-
ing annotated for the same scene. Tab. 2 and Tab. 3 show
all the text templates for direct descriptions and relational de-
scriptions, respectively.

Threshold: As described in Sec. 2.2.2 of our papaer, we used
a threshold parameter α, to generate distance text. When
referring to the nearest object, we set α to 1.8, and for the
farthest object, we set it to 3.4. The average room size in
our dataset was 4.3 along the x-axis and 5.6 along the y-axis.
These thresholds were determined based on qualitative obser-
vations during dataset creation, as they led to the generation
of the most natural and contextually appropriate text descrip-
tions.

Robot’s location: Fig. 3 show the robot’s location. This fig-
ure plots the x,y coordinates of the robot’s locations in the
dataset as a scatter plot. It shows that the plots are concen-
trated around the origin in the location distribution.
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Fig. 3. Location distribution

4. TRAINING DETAILS

The same training conditions are applied to both ScanRefer
and ScanRefer+VP, as well as EDA and EDA+VP. Below, we

will explain the training conditions in the order of ScanRefer
and ScanRefer+VP, followed by EDA and EDA+VP.

4.1. ScanRefer and ScanRefer+VP

We train ScanRefer and ScanRefer+VP model using Adam [8]
optimizer. The learning rate for training the model is set to
1 × 10−3, and the exponential decay rates for the moment
estimates are (β1, β2) = (0.9, 0.999).

4.2. EDA and EDA+VP

We train EDA and EDA+VP using AdamW [9] optimizer.
The learning rate for the part where the visual feature V is
applied cross-attention with the text feature T to produce the
updated visual feature V ′ (see Fig. 1) is set to 2×10−3, while
the learning rate for all other parts is set to 2× 10−4. The ex-
ponential decay rates for the moment estimates are (β1, β2)
= (0.9, 0.999).



Table 2. Direct description templates
Category Template

Right

The {target object} you see on your right
The {target object} on your right
The {target object} located on your right side
From your vantage point, the {target object} on the right.
The {target object} that appears to be on the right from your viewpoint.
Your right-side {target object}
The {target object} positioned to your right.

Left

The {target object} you see on your left
The {target object} on your left
The {target object} located on your left
From your vantage point, the {target object} on the left.
The {target object} that appears to be on the left from your viewpoint.
Your left-side {target object}
The {target object} positioned to your left.

Front

The {target object} in front of you
The {target object} you see in front of you
The {target object} ahead of you
The {target object} situated in your front
The {target object} up front
The {target object} that’s right ahead of you

Behind

The {target object} behind you
The {target object} located behind you
The {target object} at your back.
The {target object} situated behind you.

Closest

The {target object} closest to you
The {target object} nearest to you
The {target object} near you
The {target object} right by you.
The {target object} by your side
Your nearest {target object}
The {target object} that is closest to where you are.

Farthest

The {target object} farthest to you
The {target object} furthest away from you
The {target object} at the farthest distance from you
Your most distant {target object}.
The {target object} farthest away from your current location.



Table 3. Relational description templates
Category Template

Right

The {target object} to the right of the {surrounding object}
The {target object} located to the right of the {surrounding object} as seen from you
The {target object} to the right of the {surrounding object} from your perspective
From your point of view, the {target object} to the right of the {surrounding object}
The {target object} on the {surrounding object}’s right side, as seen by you.
The {target object} to the right of another {surrounding object}
The {target object} located to the right of another {surrounding object} as seen from you
The {target object} to the right of another {surrounding object} from your perspective
From your point of view, the {target object} to the right of another {surrounding object}
The {target object} on another {surrounding object}’s right side, as seen by you.

Left

The {target object} to the left of the {surrounding object}
The {target object} located to the left of the {surrounding object} as seen from you
The {target object} to the left of the {surrounding object} from your perspective
From your point of view, the {target object} to the left of the {surrounding object}
The {target object} on the {surrounding object}’s left side, as seen by you.
The {target object} to the left of another {surrounding object}
The {target object} located to the left of another {surrounding object} as seen from you
The {target object} to the left of another {surrounding object} from your perspective
From your point of view, the {target object} to the left of another {surrounding object}
The {target object} on another {surrounding object}’s left side, as seen by you.

Front

The {target object} in front of the {surrounding object}
The {target object} located in front of the {surrounding object} as seen from you
The {target object} in front of the {surrounding object} from your perspective
From your point of view, the {target object} in front of the {surrounding object}
The {target object} you see in front of the {surrounding object}.
The {target object} in front of another {surrounding object}
The {target object} located in front of another {surrounding object} as seen from you
The {target object} in front of another {surrounding object} from your perspective
From your point of view, the {target object} in front of another {surrounding object}
The {target object} you see in front of another {surrounding object}.

Behind

The {target object} behind the {surrounding object}
The {target object} located behind the {surrounding object} as seen from you
The {target object} behind the {surrounding object} from your perspective
From your point of view, the {target object} behind the {surrounding object}
The {target object} at the back of the {surrounding object} from your view.
The {target object} at the back of the {surrounding object} from where you’re looking.
The {target object} you see at the back of the {surrounding object}.
The {target object} behind another {surrounding object}
The {target object} located behind another {surrounding object} as seen from you
The {target object} behind another {surrounding object} from your perspective
From your point of view, the {target object} behind another {surrounding object}
The {target object} at the back of another {surrounding object} from your view.
The {target object} at the back of another {surrounding object} from where you’re looking.
The {target object} you see at the back of another {surrounding object}.
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