DIFFUSION TO CONFUSION: NATURALISTIC ADVERSARIAL PATCH GENERATION
BASED ON DIFFUSION MODEL FOR OBJECT DETECTOR

Appendix

Xt—1

Fig. 1. The computational graph to compute the loss of an
ODE.

1. ADJOINT METHOD FOR BACKPROPAGATION

We can implement the DM in ODE form. That is, the tar-
get Ordinary Differential Equation (ODE) is given by dx =
fo(x¢,t)dt, where fy is the ODE driven by the DDIM for-
mulation. Consider the computational graph of the DDIM
diffusion-generating process without randomness. Then, the
next step is uniquely determined by the current state. If we
produce some final loss L using the last state xg, for clar-
ity, we explicitly draw the dependency in Figure 1. Chen et
al. [1] demonstrate how to backpropagate through the gen-
erating process through the Neural ODE by solving another
adjoint ODE, with only O(1) space memory and linear time
complexity. In this case, the adjoint state is defined as a; =
;’—)ﬁ. It satisfied the adjoint ODE,

% = —atiafea(i?t). (n

Thus far, DM has exhibited superior properties compared
to various generative models, without imposing excessive
computation burdens. This makes it a perfect candidate as an
adversarial patch generator.

To adopt the adjoint method to optimize per iteration of
the latent, we use the Euler method to backpropagate the ad-
joint method.

In addition, our approach involves updating the latent rep-
resentation of a patch at time ¢ through a forward operation
from latent /; to the patch and then to the loss as follows:

1 /0
patch = vae_decode (lt + 3 / score(l,,, u) du) 2)
t

loss = loss_fn(patch, batch) 3)

The computational load of backpropagating Equation 2 is
considerably higher than that of Equation 3. We employ a
partial backpropagation strategy for Equation 3 with each
batch, followed by a complete backpropagation of Equation
2 after processing a large dataset. This approach significantly
improves the efficiency of updating Al;, namely gradient

Listing 1. Classic Method
epoch in range (EPOCH) :
for batch in inria_dataloader:
diffusion(x_half)
loss = adv_patch(x_0, batch)
loss.backward ()
optimizer.step ()

for

x 0 =

Listing 2. Revised Method
for epoch in range (EPOCH) :
x_0 = diffusion(x_half) # time bottleneck
derivative =
torch.autograd.grad(
adv_patch (x_0, batch), x_0,
retain_graph=False
) [0]
for batch in inria_dataloader
) # This does not take much time
x_0.backward (derivative)
optimizer.step ()

sum (

Fig. 2. The PyTorch code to accelerate adjoint-method-based
backpropagation for the diffusion model. We wrap the detail
of diffusion steps in Figure 1 as x_0 = diffusion(x_half
). We abstract the scene rendering and other operations to
generate a loss function as loss = batch).
Our revision is to speed up the data processing time instead
of updating the patch per sample in the batch.

adv_patch (x_0,

accumulation (AMB-GA) for the AMB.

Therefore, despite the O(1) memory in need, we found
backpropagating through the generating process is time-
consuming. Although the adjoint method cannot speed up
the backpropagation, we can still increase the data processed
per backpropagation. In our implementation, we use the full
dataset to implement an iteration on the starting latent as
shown in Figure 2. The result is 30 times more instances
processed per second as shown in Table 1.

2. MORE EXPERIMENTS

2.1. Cross-model Generalizability

We further show the results using the proposed approach with
AMB in Table 3 show that our generated patches still have
a higher attack performance than the previous state-of-the-art
GAN-based naturalistic adversarial patch generation method
by Hu er al. [5] where the diagonal entries of the tables cor-

Table 1. Time Comparisons of the classic and the revised
methods for adjoint method-based backpropagation for the
diffusion model (Figure 2).

Method Batch size Throughput (sample/second)
Classic 12 1.01
Revised 614 30.94

Table 2. Samples images of the INRIA [2] and MPII
datasets [3].

INRIA [2]

respond to the performances in the white-box attack setting,
and the off-diagonal ones refer to the black-box attack setting
in which an adversarial patch generated upon attacking one
detector transfers well to another.

These results suggest that our patches are naturalistic and
stealthy enough to fail SAC. This is possibly due to the fact
that their model was trained on adversarial noise patches
which have very different distributions from ours, which may
limit its ability to generalize on other types of adversarial
patches.

2.2. Cross-dataset Evaluation

To enable cross-dataset evaluation, we use the same testing
split from Hu et al. [5] for the MPII dataset [3], in which we
use the object detectors’ predictions on clean test data (i.e.,
without applying any patch) as the reference labels. Table 2
shows examples of the test images in both datasets and their
corresponding reference labels.

The results in Table 4 indicate that the performance of
the generated patches on MPII may not necessarily generalize
well to other datasets, possibly because there are differences
in attributes such as the position, number, viewing angle of
people, etc.

2.3. More Robustness Results against Existing Defenses

Besides using the off-the-shelf pretrained SAC model, we
further finetune the SAC model with our diffusion-based ad-
versarial patches for more challenging evaluation upon the
proposed method. The patches are optimized with 20 epochs
using 5-step AMB. We randomly pasted one of the 1,000
generated patches onto each image from a COCO sub-dataset
of 10,000 samples, obtaining the results in Table 5. Although
the attack performances slightly drop, the proposed methods
are still robust against the finetuned SAC.

Besides the quantitative results, we also present the qual-
itative results of the robustness against the state-of-the-art
adversarial patch removal algorithm, segment-and-complete
(SAC) [7], for the proposed approach and other adversarial
patch generation methods. As illustrated in Table 6 and 7,
all the approaches can easily evade the detection of vanilla
YOLOVvV2. However, when SAC is applied, the patches gen-
erated by [4] and NPAP [5] (i.e., NPAP is a GAN-based
naturalistic adversarial patch generation method.) are de-
tected and removed so that the pedestrians are still detected
by YOLOvV2. In contrast, the proposed approach can effec-
tively defend against the attack of SAC.

2.4. Classifier-free Guidance Scale

Ho and Salimans [8] proposed classifier-free guidance (CFG)
to control the output content of the diffusion model. They
randomly mask out the conditional input during training the
denoising U-Net, making the U-Net capable of both uncon-
ditional and conditional denoising. During sampling, a CFG
weight w controls the amount of extrapolation from the un-
conditional noise prediction towards the conditional one. We
sweep over a range of w (i.e., from the values of {1, 2, ..., 20})
to see if higher text condition guidance helps boost the natu-
ralness of the generated patches, as shown in Figure 3.

2.5. Memory Reduction Analysis

Our memory analysis on the GPU demonstrates the efficiency
of the proposed AMB algorithm on FP16 Stable Diffusion
(SD). For the forward process of AMB Equation 2, the mem-
ory requirement is 2.9 GB, and for Equation 3, it is 5.0 GB for
batch size 16. These numbers are significantly lower than the
memory demands of traditional techniques. Without AMB,
the memory usage is estimated (4.1 x N + C') GB, where N
is the number of denoising steps and C' depends on the imple-
mentation of Equation 3 and VAE. In our setting, C' = 6.2. As
backpropagation releases the computational graph, the mem-
ory usage will decrease to approximately the model size. As
the denoising steps grows, it quickly becomes infeasible for a
consumer-grade 24GB NVidia RTX 3090 GPU.

Table 3. Cross-model attack performance of the patches generated using AMB (mAP%, lower is better). Best results are

underlined, and the top-2 best results are in bold.

Method YL2 YL3 YL3t YL4 YL4t FRCNN DDETR YL5s YL7t Avg.
(Pr) Thys et al. [4] * 2.68 2251 874 12.89 3.25 39.41 34.46 34.00 20.81 19.86
(Pu1) Huetal [5]7 3476 37779 21.69 46.80 8.67 59.97 55.85 38.19 2920 36.99
(Prr2) Huang et al. [6] * 7.52 1071 13.83 3191 17.25 24.86 14.12 29.66 29.39 19.92

(P1) YL2 856 39.52 2557 6592 2649 47.36 59.56 62.88 4253 42.04

(P,) YL3 249 2759 2211 58.89 227 51.54 57.26 59.21 3546 39.96

(P;) YL3t 3329 3585 854 6478 17.68 59.28 58.9 66.87 29.17 41.6
g (Ps) YL4 50.39 6192 5042 18.79 53.87 61.46 59.84 66.51 49.2 5249
8 (Ps) YLAt 28.06 34.68 1848 6286 9.33 58.51 56.03 59.07 32.65 39.96
.E (Ps) FRCNN 17.71 39.61 32.65 66.77 35.41 2391 56.52 55.63 3492 40.35
£ (p,) DDETR 33.12 59.12 4416 6031 48.42 41.21 21.19 44778 4425 44.06
£ () YLSs 26.04 3156 2145 57.61 2321 55.22 52.2 38.66 2541 36.82
O (p) YLTt 28.72 50.12 36.85 47.11 35.56 58.85 54.82 5649 1948 43.11
(Pv) Unoptimized Patch 62.74 71.15 65.60 6355 63.84 67.01 68.49 74.38 59.10 66.21

*Trained on YL2. T Trained on YLA4t. All results are the best available.

2.6. Computation Efficiency

It is worth noting that the cross-model results reported in the
main paper are obtained by applying gradient checkpointing.
Without applying checkpointing or adjoint method, it is un-
able to generate the patch upon a single NVidia RTX 3090
GPU. In Table 8, we show the required time to generate a
patch in 5 denoising steps and 100 epochs over the full INRIA
dataset using a single 3090 GPU for gradient checkpointing,
AMB, and AMB-GA, respectively. For 30x faster speed, we
refer to the acceleration achieved by AMB-GA over AMB.

3. ABLATION STUDY

In this section, we thoroughly investigate the effectiveness of
different components for the proposed approach.

3.1. Diffusion Parameters

Noise level. Through our experiments, we find that different
noise levels significantly affect the training results. We ob-
serve that setting ¢s:,.+ to a small value (typically less than
0.37T") does not introduce sufficient randomness to the pro-
cess, resulting in images similar to those in prior study [5]
which generates patches by adjusting the latent directly. Con-
versely, setting ts.5,+ to a large value (usually greater than
0.7T) leads to excessive randomness, causing gradient van-
ishing and prolonging training time. These effects are par-
ticularly pronounced at extreme values of ¢ (0 and 7"), where
setting tstar+ = 0 eliminates noise altogether, and setting
tstart = 1 results in pure noise and gradient elimination.
Therefore, in our experiments, we set ¢ € [0.47,0.67] as the
“sweet spot”, since it strikes a balance between introducing
enough randomness and avoiding excessive noise that results
in optimization difficulties. Step size. We provide a holistic
view for the effect of different ¢ 5.+ and step size s in Figure
4, where we use CLIP [9] embeddings to calculate the simi-

~ @
S =
< :
: -
Q
—a— mAP —=— CLIP Sim.
14 1 | | | | | | | | | |
2 4 6 8 10 12 14 16 18 20
w
Fig. 3. Effects of the classifier-free diffusion guidance scale.
Table 4. Cross-dataset attack performance (mAP%) using YL4t. Best results are in bold.

Method Trained on INRIA MPII Mix
Tested on INRIA MPII Mix INRIA MPII Mix INRIA MPII Mix
Hu et al. [5] 8.67 0.51 2.69 22.05 7.92 14.12 18.45 6.32 11.68
Ours 8.45 2.38 4.99 15.59 6.10 10.24 12.38 4.04 7.64

Table 5. The Attack Performance for YL2 in MAP(%) after
applying finetuned SAC [7].

Method without SAC Original SAC Finetuned SAC
Ours (AMB) 8.56 10.14 29.91
Ours 11.62 11.62 29.19

larity between the initial patch F,;, and the optimized patch.
CLIP is a foundation model frequently used as the go-to fea-
ture extractor. We use the similarity as an automatic objec-
tive metric that reflects the preservation of image quality and
semantic. We visually show that s has little impact on the
generated patch and therefore average the statistics along its
axis in the line chart of Figure 4. Small #,,, leads to subopti-
mal image quality due to its lack of randomness, and big t,,+
causes the image to disregard our optimization objective and
its semantic, despite generating good-looking pictures.

4. PHYSICAL EXPERIMENTS

To show that our method generalizes well to real-world set-
tings, we use commercial heat transfer technology to print the
adversarial patches onto T-shirts. In addition to clothes, we
also realize the adversarial patch as canvas and paper. Fig-
ure 5 shows pictures of the printed materials. We also illus-
trate the evaluation results of our physical experiments under

the real-world scenes for the captured videos. The sampled
frames are shown in Figure 6. We find the proposed method
can consistently and successfully evade the detection by an
object detector.

5. REFERENCES

[1] Chen et al., “Neural ordinary differential equations,”
NeurIPS, 2018.

[2] Dalal et al., “Histograms of oriented gradients for hu-
man detection,” in CVPR, 2005.

[3] Andriluka et al., “2d human pose estimation: New
benchmark and state of the art analysis,” in CVPR, 2014.

[4] Thys et al., “Fooling automated surveillance cameras:
adversarial patches to attack person detection,” in CVPR
Workshop, 2019.

[5] Hu et al., “Naturalistic physical adversarial patch for
object detectors,” in ICCV, 2021.

[6] Huang et al., “T-sea: Transfer-based self-ensemble at-
tack on object detection,” in CVPR, 2023.

[7] Liu et al., “Segment and complete: Defending object
detectors against adversarial patch attacks with robust
patch detection,” in CVPR, 2022.

Table 6. Qualitative comparison of the robustness against
SAC [7] for [4] and our approach where YL2 denotes
YOLOvV2.

Table 7. Qualitative comparison of the robustness against
SAC [7] for NPAP [5] and our approach where YL2 denotes
YOLOV2.

[4] Ours

NPAP [5] Ours

YL2 YL2
YL2+SAC YL2+SAC
[8] Ho et al., “Classifier-free diffusion guidance,” in

NeurIPS Workshop, 2021.

[9] Radford et al., “Learning transferable visual models
from natural language supervision,” in /ICML, 2021.

[10] Redmon et al., “Yolo9000: better, faster, stronger,” in
CVPR, 2017.

[11] Redmon et al., “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[12] Bochkovskiy et al., “Yolov4:
and accuracy of object detection,”
arXiv:2004.10934, 2020.

Optimal speed
arXiv preprint

[13] Jocher et al., “ultralytics/yolov5: v7.0 - YOLOvS SOTA
Realtime Instance Segmentation,” 2022.

[14] Wang et al., “Yolov7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors,”
arXiv preprint arXiv:2207.02696, 2022.

[15] Ren et al., “Faster r-cnn: Towards real-time object de-
tection with region proposal networks,” in NeurIPS,
2015.

[16] Zhu et al., “Deformable DETR: deformable transform-
ers for end-to-end object detection,” in ICLR, 2021.

[17] Rombach et al., “High-resolution image synthesis with
latent diffusion models,” in CVPR, 2022.

Table 8. The computation time required for different genera-
tion strategy where vanilla denotes gradient checkpointing.

Vanilla AMB AMB-GA
8hr32min 2hr48min

Setting

Time 14min

sart / T
0.2

02 04 05 07 0.
2

GGG IR IL R
EalFl
T AT

! "
S 20 £
5 - 97 o=
S 30 %
g 40l |+mAP%CLIFSim. | 196 8
50] 95

Fig. 4. Effects of the noise level and step size. In the bot-
tom line chart, each data point is an average score of the four
patches on the same vertical axis.

Fig. 5. Printed materials, from top left to right bottom are cloth, cloth, cloth, canvas, canvas, and paper, respectively.

Table 9. Model repositories and weights.

Model family

Code repository

Pretrained weights

YOLOV2 [10]

https://gitlab.com/EAVISE/adversarial-yolo

https://pjreddie.com/media/files/yolov2.weights

YOLOV3 [11]

https://github.com/eriklindernoren/PyTorch—YOLOv3

https://pjreddie.com/media/files/yolov3.weights
https://pjreddie.com/media/files/yolov3-tiny.weights

YOLOV4 [12]

https://github.com/Tianxiaomo/pytorch-Y0OLOv4

https://www.dropbox.com/s/jp30sg9k2lop55j/yolov4d.weights
https://www.dropbox.com/s/t90alxazhbh2ere/yolovd-tiny.weights

YOLOVS [13]

https://github.com/ultralytics/yolov5

https://github.com/ultralytics/yolov5/releases/download/v7.0/
yolov5s.pt

YOLOV7 [14]

https://github.com/WongKinYiu/yolov7

https://github.com/WongKinYiu/yolov7/releases/download/v0.1/
yolov7-tiny.pt

FasterRCNN [15]

https://pytorch.org/vision/0.12/_modules/torchvision/models/
detection/faster_rcnn.html

https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_
coco-258fb6c6.pth

Deformable DETR [16]

https://huggingface.co/SenseTime/deformable-detr

https://huggingface.co/SenseTime/deformable-detr

Latent Diffusion [17]

https://github.com/CompVis/latent-diffusion

https://ommer—-lab.com/files/latent-diffusion/nitro/
txt2img-f8-large/model.ckpt

Stable Diffusion [17]

https://github.com/CompVis/stable-diffusion

https://huggingface.co/CompVis/stable-diffusion-vl-4
https://huggingface.co/hakurei/waifu-diffusion-v1-3
https://huggingface.co/stabilityai/stable-diffusion-2-base

Table 10. Initialized images and their corresponding text prompts.

Generated image Prompt Negative Prompt

mutation, ugly, weird eyes.

. A high quality photo Bad anatomy, bad
of a Pomeranian, clean proportions, deformed,
' background. disfigured, duplicate,

A high quality photo of a Bad anatomy, bad

car. proportions, deformed,
disfigured, duplicate,
mutation, ugly.

lgirl, aqua eyes, baseball Bad anatomy, bad

cap, blonde hair, closed proportions, deformed,
mouth, earrings, green disfigured, duplicate,
background, hat, hoop mutation, ugly, weird eyes.

earrings, jewelry, looking
at viewer, shirt, short
hair, simple background,
solo, upper body, yellow
shirt, without hand.

person 0.93

person 0.91

Fig. 6. We further illustrate the physical evaluation results in the main paper using the sampled frames from different
videos under various scenes.

