
Appendix of “A physics-guided smoothing method for material modeling with
digital image correlation measurements”

1 Constitutive Law Learning

Instead of learning a PDE solution operator which maps from a body load function b to the desired solution (displacement)
field u, constitutive operator learning approaches [6] aim to construct a surrogate operator G : U → F that maps from the
displacement function u(x) to the body load function b(x). Without loss of generality, in this work we consider the constitutive
operator as a peridynamic material model. For simplicity, we focus on (quasi)static and two-dimensional tasks.

1.1 Peridynamic Theory

Peridynamics is a continuum mechanics model, where the constitutive operator is written as an integral instead of differential
operators as in classical PDEs. A quasi-static peridynamics model writes:∫

𝐵𝛿 (x)
f (u,q,x) 𝑑q+b(x) = 000, x ∈ Ω, (13)

where Ω ⊂ R𝑑 is a domain of interest, x and q are material points in the reference (undeformed) configuration of the body.
𝐵𝛿 (x) is a ball centered at x of radius 𝛿. u is the displacement field, b(x, 𝑡) is the body force density (external loading).
f (u,q,x) is the pairwise bond force density that q exerts on x, satisfying f (u,q,x) = −f (u,x,q). The pairwise bond force
density is given by

f (u,q,x) = 𝑇𝑇𝑇 [u,x]⟨q−x⟩ −𝑇𝑇𝑇 [u,q]⟨x−q⟩ , (14)

where the underlined symbols denote states. A material model �̂�𝑇𝑇 (𝑌𝑌𝑌 ) determines the force state 𝑇𝑇𝑇 based on the deformation
state 𝑌𝑌𝑌 , which is characterized by

𝑌𝑌𝑌 [u,x]⟨q−x⟩ = 𝜉𝜉𝜉 +𝜂𝜂𝜂, where 𝜉𝜉𝜉 := q−x, 𝜂𝜂𝜂 := u(q) −u(x). (15)

Denoting the unit direction of the deformed bond as:

𝐷𝐷𝐷 [u,x]⟨q−x⟩ :=
𝑌𝑌𝑌 [u,x]⟨q−x⟩��𝑌𝑌𝑌 [u,x, 𝑡]⟨q−x⟩

�� = 𝜉𝜉𝜉 +𝜂𝜂𝜂
|𝜉𝜉𝜉 +𝜂𝜂𝜂 | , (16)

and the length changes of the bond as
𝑒[u,x]⟨q−x⟩ := |𝜉𝜉𝜉 +𝜂𝜂𝜂 | − |𝜉𝜉𝜉 |, (17)

then the material model for a heterogeneous body composed of ordinary, mobile material can be written as:

�̂�𝑇𝑇 (𝑌𝑌𝑌,x) = 𝑡 (𝑒,x)𝐷𝐷𝐷 , (18)

where 𝑡 denotes the scalar force state. This formulation guarantees linear and angular momentum conservation, Galilean
invariance, and frame invariance (objectivity).
Then we obtain the peridynamic model:

G[u] (x) +b(x) = 000, for x ∈ Ω, (19)

where the operator G is formulated as:

G[u] (x) :=
∫
𝐵𝛿 (0)

(
𝑡 [u,x]⟨𝜉𝜉𝜉⟩ + 𝑡 [u,x+ 𝜉𝜉𝜉]⟨−𝜉𝜉𝜉⟩

)
𝐷𝐷𝐷 [u,x]⟨𝜉𝜉𝜉⟩ 𝑑𝜉𝜉𝜉, (20)

with boundary conditions are supplied by
u(x) = u𝐵𝐶 (x), for x ∈ Ω𝐼 , (21)

where Ω𝐼 := {x|x ∈ R𝑑\Ω, dist(x,Ω) < 2𝛿} is the interaction region in which boundary data u𝐵𝐶 is prescribed.



1.2 Peridynamics operator learning (PNO)

To learn a constitutive operator based on peridynamic theory, one can parameterize the scalar force state 𝑡 with neural networks:

𝑡 [u,x]⟨𝜉𝜉𝜉⟩ := 𝑡𝑁𝑁 (𝜔(x, 𝜉𝜉𝜉), 𝜗(x), 𝑒[u,x]⟨𝜉𝜉𝜉⟩, |𝜉𝜉𝜉 |;v) , (22)

where
𝜔(x, 𝜉𝜉𝜉) := 𝜔𝑁𝑁 (𝑅𝑅𝑅(−𝛼(x))𝜉𝜉𝜉;w) , (23)

𝑅𝑅𝑅(𝜃) :=
[
cos𝜃 −sin𝜃
sin𝜃 cos𝜃

]
, (24)

𝜗(x) :=

∫
𝐵𝛿 (0) 𝜔

𝑁𝑁 (𝜉𝜉𝜉;w) 𝑒[u,x]⟨𝜉𝜉𝜉⟩|𝜉𝜉𝜉 |𝑑𝜉𝜉𝜉∫
𝐵𝛿 (0) 𝜔

𝑁𝑁 (𝜉𝜉𝜉;w) |𝜉𝜉𝜉 |2𝑑𝜉𝜉𝜉
. (25)

Here, 𝑡𝑁𝑁 and 𝜔𝑁𝑁 are scalar-valued functions implemented as multi-layer perceptrons (MLPs) with learnable parameters v
and w, respectively. The function 𝜔 serves as a kernel that defines the weighting of neighboring material points. To account
for fiber orientation at each location, the rotation matrix 𝑅𝑅𝑅 is introduced to capture the fiber orientation at each location by
aligning the direction of the kernel function with the fiber orientation. If the material is homogeneous, then 𝜔 can only depend
on the direction of the bond vector 𝜉𝜉𝜉 as well as |𝜉𝜉𝜉 |, i.e., 𝜔(x, 𝜉𝜉𝜉) := 𝜔(𝜉𝜉𝜉). Here 𝜗 represents a nonlocal generalization of the
dilatation, which describes the volume change of material near a point due to the deformation in volume.
With the PNO architecture, one can model complex material mechanical responses learned from data. In particular, given a
set of function pair observations D = {u𝑠 (x),b𝑠 (x)}𝑆𝑡𝑟

𝑠=1 of the loading field b𝑠 (x) and the corresponding displacement field
u𝑠 (x), the set of parameters in the network architecture is inferred by minimizing the error in (19).
When b ≠ 0, one can use the relative 𝐿2 error of the output function, b, as the loss function:

lossb =
1
𝑆𝑡𝑟

𝑆𝑡𝑟∑︁
𝑠=1

| |G[u𝑠] +b𝑠 | |𝐿2 (Ω)
| |b𝑠 | |𝐿2 (Ω)

. (26)

However, in biaxial testing protocols we are considering here, external forces are absent. Then, the loss function (26) becomes
invalid due to a zero denominator. To overcome this issue, we reformulate the loss function using the displacement field and
the averaged axial components of the first Piola–Kirchhoff stress:

loss =
𝛾

𝑆𝑡𝑟

𝑆𝑡𝑟∑︁
𝑠=1

����G−1 [b𝑠] +u𝑠
����
𝐿2 (Ω)

| |u𝑠 | |𝐿2 (Ω)
+ 1−𝛾

𝑆𝑡𝑟

𝑆𝑡𝑟∑︁
𝑠=1

��P𝑠𝑒𝑥𝑝 −P𝑠
��

P̄
, (27)

where P𝑠𝑒𝑥𝑝 denotes the spatial average of axial first Piola–Kirchhoff stresses for sample 𝑠, and P̄ is the mean of axial ground
truth stresses across all training samples, 𝛾 is a tunable hyperparameter. Once the constitutive law is obtained, for any new
loading instance b(x), we solve for the displacement field u(x) using an iterative nonlinear static solver. Hence, the PNO
model is generalizable to new and unseen loading instances.

2 DIC Datasets

Traditional strain gauges, working well for engineering materials (e.g., aluminum/steel), are not capable of measuring the
strain of biological tissues typically under a large deformation regime. On the other hand, laser or optical extensometer
are the experimental alternative to measure large-deformation strains of bio-tissues, but they are limited to 1D axial strain
measurements. Since most of the soft bio-tissues are highly nonlinear and heterogeneous in nature, digital image correlation
(DIC) is a more commonly adopted displacement- and strain-tracking technique that can be integrated with the planar biaxial
testing system – our application focus.

2.1 Data Collection for dataset 1

This dataset is generated from a biaxial testing on a standard nitrile glove sourced from Dealmed (New York, USA), cutting a
7.5 mm by 7.5 mm specimen for analysis. The specimen’s thickness was precisely measured using a Keyence laser thickness
gauge (Illinois, USA). We then applied a random speckle pattern to the surface using an airbrush.
The speckled specimen was mounted on a biaxial testing device from CellScale Biomaterials Testing Co. (Canada), using five
BioRake tines for secure fixation. During the biaxial testing, three loading-unloading cycles were performed in each direction,



with a target force of 750 mN. Force and actuator position data were recorded at 5 Hz for stress and strain calculations, essential
for the constitutive model fitting.
Simultaneously, a CCD camera captured images at 5 Hz, and digital image correlation (DIC) analysis was conducted using
the CellScale LabJoy software. The central 6 mm by 5.5 mm region of the specimen, which had a more uniformly distributed
speckle pattern, was selected for tracking. A 20 by 20 node grid was constructed, and the tracked coordinates were exported
for further analysis.

2.2 Data Collection for dataset 2

This dataset is from a biaxial mechanical testing on porcine tricuspid valve anterior leaflet (TVAL) tissue. The tissue was
sourced from an adult porcine heart (120 kg, 1.5 years old) obtained from a USDA-approved abattoir. Upon arrival at the
laboratory, the TVAL tissue was sectioned into square specimens, and thickness measurements were taken at three locations
using an optical system, yielding an average tissue thickness of 0.22 mm. A random speckle pattern was applied to the surface
of the tissue using black paint to facilitate displacement tracking via DIC, with fiducial markers added to ensure accurate
measurements.
The prepared specimen was mounted on a biaxial testing system (BioTester, CellScale), with an effective testing area of 8.72
× 10.75 mm. Prior to mechanical testing, the specimen underwent preconditioning in phosphate-buffered saline (PBS) to
mimic in vivo conditions, following a protocol of 10 cycles of equi-biaxial tension loading and unloading, aiming for a first
Piola-Kirchhoff stress of 150 kPa.
Subsequent biaxial tension tests involved seven different loading protocols, each with different biaxial stress ratios (𝑃11 : 𝑃22),
including combinations of 1:1, 1:0.75, 1:0.5, 1:0.25, 0.75:1, 0.5:1, and 0.25:1. Each protocol was repeated for five cycles of
loading and unloading, with force and actuator position data recorded at a frequency of 5 Hz, resulting in a total of 1926 data
points.
To minimize stress concentration effects near the mounting hooks, deformation analysis focused on the central region of
the specimen (4.4 × 4.4 mm). The force-displacement data were smooth, thanks to the high-resolution load cell with 0.1%
accuracy. The displacement rates used during testing (0.16 mm/s in the X-direction and 0.28 mm/s in the Y-direction) were
low enough to avoid significant viscoelastic effects, ensuring the tests were quasi-static with minimal hysteresis. This approach
allowed for reliable mechanical characterization of the tissue’s biaxial behavior under the given conditions.

3 Experimental Details

3.1 Details in PGS implementation

In the PGS implementation, we set the maximum number of iterations to 50,000. The initial learning rate is 1e-5, with
a learning rate decay factor of 0.9 applied every 1,000 steps. The basis function is a first-order polynomial. The training
stopping criteria parameters TOLu and TOLE are set to 3 and 1e-5, respectively.

Fig. 6: Dataset 1: Comparison of strains of PGS data obtained using different 𝛽.



Fig. 7: Dataset 2: Comparison of the displacements and strains when using different weight parameters 𝛽.

3.2 Details in PNO training

The widths of the MLPs for 𝜔𝑁𝑁 , 𝑡𝑁𝑁 and 𝛼𝑁𝑁 are (2, 256, 512, 1), (4, 512, 512, 1), and (2, 128, 128, 1) respectively, and
the peridynamic horizon size is set as 𝛿 = 3Δ𝑥. In all experiments we decrease the learning rate with a ratio of decay rate
every 50 epochs. There are several different values of the initial learning rates and learning rate decay factors are considered
to obtain the best training results on each dataset.

4 Additional Results

Herein, we provide more results as a supplement of Section 4.
As a supplement of the ablation study, in Fig. 6. we show the minimum strains when using different levels of physical loss
parameter, 𝛽. It can be seen that when 𝛽 is too small (e.g., 𝛽 = 1), the algorithm can not sufficiently eliminates all negative
strains. When 𝛽 gets larger, the discrepancy between observed u𝑒𝑥𝑝 and the reconstructed u also increases. From Fig. 6 and
7, it looks like 𝛽 = 100 provides a good balance between these two effects.
As a supplement of experiments for dataset 2, in Fig. 8 we demonstrate the reconstructed strain fields in an exemplar sample,
from PGS and the two baselines. One can see that this dataset has smaller negative strain regimes, and PGS still successfully
eliminates them without drastically changing the displacement field.



Fig. 8: Dataset 2: Comparison of displacement 𝑢1 and strain 𝜖11 from three datasets.
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