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ABSTRACT

Despite the progress of 3D Gaussian Splatting (3DGS), re-
constructing one-shot animatable 3D human avatars from a
single image remains a challenging task. Existing 3DGS-
based methods primarily rely on appearance observation and
motion cues from monocular videos to reconstruct animatable
3D avatars. However, when applied to single-image setups,
these methods struggle to extract accurate 3D features from
a 2D image, limiting their ability to capture fine-grained ap-
pearance details and dynamic deformation, especially from
challenging viewpoints. In this work, we propose SIAvatar,
a novel single-image human reconstruction method that in-
tegrates diffusion-based appearance prior and parametric hu-
man model geometry prior within a 3DGS framework. Sec-
ondly, a vertex-based adaptive Gaussian densification scheme
is introduced to effectively represent human geometry while
mitigating artifacts. Extensive experiments demonstrate that
SIAvatar generates realistic 3D avatars with plausible appear-
ance details and novel pose animation from a single input im-
age. Video demo: https://sigport.org/documents/siavatar.

Index Terms— single-image human reconstruction, 3D
Gaussian Splatting, novel pose animation

1. INTRODUCTION

Customized avatar reconstruction is a significant yet challeng-
ing task in computer vision, with broad applications in gam-
ing, virtual reality, and telepresence. 3D human reconstruc-
tion methods can generally be categorized into explicit and
implicit approaches. Explicit methods [1, 2] optimize mesh
parameters based on parametric body models [3, 4] to align
with observed images but struggle with detailed clothing and
complex deformation. Implicit methods [5, 6, 7], which rely
on continuous functions such as signed distance functions [8]
and neural radiance fields [9], offer greater flexibility in han-
dling topology but suffer from high computational costs and
inefficiencies.

Recently, the emergence of 3D Gaussian Splatting [10]
provides a promising framework for 3D reconstruction and
novel view synthesis. Existing 3DGS-based approaches [11,
12, 13] leverage abundant appearance observation and motion
cues from monocular videos to reconstruct animatable 3D
avatars. However, video data often requires a controlled cap-
ture environment and motion sequences of a subject perform-

ing specific actions, which may not always be feasible, espe-
cially in casual environments. In contrast, single-image data
offers a more flexible and convenient solution to quick avatar
customization without complex capture processes. Neverthe-
less, 3DGS-based methods typically lack the ability to infer
sufficient 3D content from a single 2D image, resulting in dif-
ficulties in fine-grained appearance reconstruction and novel
pose animation.

To infer rich 3D content from a single image, significantly
reduce data requirements, and achieve high-quality rendering,
we propose SIAvatar for reconstructing animatable 3D Gaus-
sian avatars from a single image. Our key insight lies in inte-
grating appearance prior from a diffusion model and geome-
try prior from a parametric human model into a 3DGS frame-
work. The diffusion-based prior enables SIAvatar to generate
the plausible appearance details by lifting 2D observation to
3D content, while the geometry prior provides accurate hu-
man body structures and a robust foundation for capturing
complex poses. Specifically, we utilize a pretrained 3D-aware
diffusion model [14] to hallucinate invisible regions of human
appearance for multi-view supervision. Then, we estimate
a canonical SMPL-X [4] human mesh, which serves as the
geometry prior for 3D Gaussian initialization and animation.
A point-to-point correspondence is established between 3D
Gaussians and the vertices of the human mesh, enabling the
application of our vertex-based adaptive Gaussian densifica-
tion scheme to capture fine human geometry while reducing
artifacts. We animate the 3D avatars by performing linear
blend skinning (LBS) to the 3D Gaussians using SMPL-X
parameters and render them as 2D images in novel views.

Our contributions are summarized as follows:

• We present SIAvatar for animatable 3D Gaussian avatar
reconstruction, a single-image method that incorpo-
rates diffusion-based appearance prior and parametric
human model geometry prior into a 3DGS framework.

• We introduce a vertex-based adaptive Gaussian densi-
fication scheme to produce a reasonably compact and
precise representation of human geometry and mitigate
artifacts.

• Extensive experiments demonstrate the effectiveness of
SIAvatar in generating high-quality 3D human avatars
with plausible appearance and novel pose animation
from a single image.

https://sigport.org/documents/siavatar
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Fig. 1. Overview of SIAvatar. Given a single image input, SIAvatar leverages diffusion-based appearance prior and SMPL-X
geometry prior to regress the 3DGS representation of a 3D human avatar. During the inference stage, SIAvatar animates the 3D
avatar by applying LBS to the 3D Gaussians using SMPL-X facial expression and pose parameters, and then renders the avatar
as 2D images in arbitrary views.

2. METHOD

2.1. Preliminary

3D Gaussian Splatting [10] represents 3D content as a set of
3D Gaussians G = {µi, si,qi, ci,σi}Ni=1, where µi denotes
the 3D position, si the scale, qi the rotation, ci the color, σi

the opacity, and N is the number of 3D Gaussians. This rep-
resentation preserves properties of volumetric rendering for
optimization, while enabling real-time differentiable rasteri-
zation for 2D image rendering.
SMPL-X [4] is a unified parametric human body model with
learned blend shapes based on LBS. Given pose parameters θ,
shape parameters β, and facial expression parameters ψ, the
SMPL-X model deforms and generates the human body mesh
M(θ, β, ψ) ∈ RN×3 comprising N = 10475 vertices.

2.2. Overview

Given a whole-body image I0 as input, our goal is to create a
3D human avatar that can be rendered from novel views and
animated with novel poses. As illustrated in Fig. 1, SIAvatar
leverages a diffusion model as multi-view appearance prior
and SMPL-X as human geometry prior to regress the 3DGS
representation of a human avatar. First, given an input human
image, we utilize a pretrained 3D-aware diffusion model [14]
to produce multi-view pseudo ground truth IpGT for appear-
ance supervision. Next, we estimate SMPL-X parameters
from the input image [15] to initialize a canonical human

mesh serving as geometry guidance. Each vertex of the
canonical mesh is fed into a tri-plane [16] encoder Etri to ag-
gregate 3D latent features Ftri. A lightweight MLP decoder
Dmlp then interprets the tri-plane features as 3D Gaussian
attributes. These 3D Gaussians can be posed with SMPL-X
facial expression ψ and pose θ, and then be rendered differen-
tiably into 2D images from novel views. To accurately model
human geometry details and mitigate artifacts, we introduce a
vertex-based adaptive Gaussian densification scheme for the
density control of 3D Gaussians.

2.3. 3D Gaussian Regression

We initialize isotropic 3D Gaussians [11, 12] from the canon-
ical human mesh M ∈ RN×3. The neutral position µ0 ∈
RN×3 of 3D Gaussians are initialized by 3D location of the
vertices. The scale dimension is set to 1. The rotation qi and
opacity σi are fixed to [1, 0, 0, 0] and 1 for all 3D Gaussians,
respectively. Inspired by EG3D [16], we adopt a tri-plane ar-
chitecture as 3D human geometry enconder for efficient and
expressive representation, coupled with a lightweight MLP as
the 3D Gaussian attributes decoder. Specifically, we query
each vertex of the canonical mesh by projecting it onto each
of the three axis-aligned orthogonal feature planes Etri ∈
R3×H×W×C to retrieve the feature components, where H ,
W and C denote the height, width, and number of channels
of each feature plane, respectively. These components are
concatenated as 3D latent features Ftri = (Fxy,Fxz,Fyz),
which are fed into the lightweight MLP Dmlp to predict the



position offset ∆µ ∈ RN×3, scale s ∈ RN×1, and color
c ∈ RN×3 for all 3D Guassians.

To animate the 3D Gaussian avatar, we transform the
canonical 3D Gaussians using SMPL-X facial expression ψ
and pose θ. The facial expression parameters ψ are mapped
to the 3D expression offset ∆µexpr ∈ RN×3 based on ex-
pression blendshapes. We then add all offsets to the neutral
position µ0 and perform LBS to the 3D Gaussians with the
transformation matrix computed from pose θ. This process
can be formulated as:

µ = µ0 +∆µ+∆µexpr, (1)

µpose = LBS(µ, θ,w), (2)

where w denotes the skinning weight. We then follow 3DGS
rasterization [10] to obtain the rendering image I:

I = R(µpose, s,q, c,σ;K,E), (3)

where R(·) is rasterization function, K represents camera in-
trinsic parameters, and E denotes camera extrinsic parame-
ters.

2.4. Vertex-based Adaptive Gaussian Densification

As shown in Fig. 2, we begin with the initial set of 3D
Gaussians derived from the SMPL-X vertices and then apply
our vertex-based adaptive Gaussian densification scheme to
achieve a more accurate and detailed representation of hu-
man geometry. Thanks to the point-to-point correspondence
between 3D Gaussians and the human mesh vertices, our
method just need to focus on under-reconstruction regions
because over-reconstruction regions, where one Gaussian
cover large areas, are naturally resolved during the optimiza-
tion of Gaussian attributes.

The densification is guided by the observation that re-
gions requiring fine-grained geometry detail modeling often
exhibit large view-space position gradients of 3D Gaussians.
Specifically, for each Gaussian whose magnitude of the view-
space position gradient exceeds a predefined threshold τ , we
identify its corresponding vertex and the associated triangular
faces. Each of these faces is subdivided into four smaller tri-
angles by introducing midpoints along its three edges. These
midpoints are then used to initialize new Gaussians, effec-
tively increasing the density of 3D Gaussian representation in
under-reconstruction regions. By leveraging the mesh struc-
ture and directly associating Gaussians with vertices, our 3D
Gaussian representation integrates seamlessly with the inher-
ent geometry of the human body. The adaptive densification
scheme ensures that denser Gaussians are densified in the re-
gions that require fine-grained geometry details modeling like
body joints, while maintaining a compact representation in
the coarse-grained regions.

Before
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Densification

Fig. 2. Example of vertex-based adaptive Gaussian densifica-
tion in the arm region.

2.5. Loss Function

During the training, we optimize the canonical mesh M, tri-
plane encoder Etri, and MLP decoder Dmlp. To minimize
image reconstruction error between pseudo ground truth IpGT

and the rendered images I from the corresponding views, we
employ a combination ofL1 loss Lrgb, SSIM [17] loss Lssim,
and LPIPS [18] loss Llpips. The reconstruction loss Lrec is
formulated as:

Lrec = λrgbLrgb + λssimLssim + λlpipsLlpips, (4)

where λrgb = 0.8, λssim = 0.2, and λlpips = 0.2.
Without fine-tuning on the input image I0 of the specific

subject, the pretrained diffusion model may introduce incor-
rect identity information in the generated multi-view images.
To ensure identity consistency, we apply ArcFace [19] loss
Larc and the aforementioned reconstruction loss Lf

rec to the
face region between input I0 and the rendered image I . The
identity loss Lid is defined as:

Lid = λarcLarc + Lf
rec, (5)

where λarc = 0.1.
To prevent floating 3D Gaussians, we apply L2 regular-

izer Ll2 and Laplacian regularizer Llap to the position offsets
and scales, The regularization loss Lreg is formulated as:

Lreg = λl2Ll2 + λlapLlap, (6)

where λl2 = 10, and λlap = 1.
The overall loss function can be formulated as:

L = Lrec + Lid + Lreg. (7)

3. EXPERIMENTS

3.1. Implementation Details

We configure the tri-plane encoder with H = 128, W = 128,
and C = 32. For each specific identity, we take a single
1024×1024 front-view image as input and train the model
for 36,000 steps with AdamW [22] optimizer. The adaptive
Gaussian densification scheme starts at 16,000 steps and ends
at 26,000 steps, with a densification interval of 2,000 steps
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Fig. 3. Qualitative comparison on THuman2.0 [20] and X-Humans [21]. All methods are trained on a front-view image for each
subject. In the first two rows, we render each avatar from different views with the same pose. In the last three rows, we animate
each avatar with novel poses and render them from novel views. We highly recommend readers view our supplementary video
for intuitive comparisons.

Table 1. Quantitative comparison on THuman2.0 [20]. * indicates that this method is trained on multi-view images.

Methods T0034 T0103 T0139

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
InstantAvatar [5] 14.93 0.880 0.181 17.16 0.903 0.140 13.81 0.860 0.185

GaussianAvatar [11] 18.20 0.909 0.112 19.12 0.922 0.082 19.04 0.904 0.111
GaussianAvatar* [11] 20.27 0.946 0.062 21.99 0.950 0.042 20.42 0.933 0.063

ExAvatar [12] 19.48 0.913 0.106 22.69 0.943 0.064 20.88 0.918 0.092

SIAvatar (Ours) 26.00 0.966 0.037 26.45 0.968 0.034 26.46 0.957 0.044

https://sigport.org/documents/siavatar


Table 2. Quantitative comparison on X-Humans [21]. * indicates that this method is trained on a monocular video.

Methods X00028 X00034 X00088

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
InstantAvatar [5] 17.14 0.921 0.114 18.42 0.907 0.115 15.48 0.890 0.138

GaussianAvatar [11] 19.14 0.937 0.071 21.91 0.931 0.060 19.84 0.926 0.066
GaussianAvatar* [11] 21.20 0.959 0.043 23.41 0.946 0.037 21.49 0.947 0.041

ExAvatar [12] 21.11 0.950 0.056 23.38 0.944 0.049 21.64 0.935 0.057

SIAvatar (Ours) 23.53 0.965 0.035 25.41 0.954 0.037 24.83 0.961 0.031

and a threshold τ = 0.0003. The model is trained on a single
NVIDIA RTX 4090 GPU, taking approximately three hours
to complete.

3.2. Comparison

We take a single front-view image as input for SIAvatar and
state-of-the-art methods [5, 11, 12] to train the avatar for each
subject. Quantitative and qualitative comparisons are con-
ducted on THuman2.0 [20] and X-Humans [21] datasets.
Quantitative Comparison. As shown in Tab. 1 and Tab. 2,
SIAvatar consistently surpasses state-of-the-art methods in
PSNR, SSIM and LPIPS across all subjects, demonstrating
its superior performance in reconstructing high-fidelity 3D
avatars from a single image. By leveraging diffusion-based
appearance prior and SMPL-X geometry prior, SIAvatar can
infer plausible and detailed appearance directly from the
single image and provide a robust structural foundation for
human shape and deformation, thus achieving better or com-
parable quantitative results compared to GaussianAvatar [11]
trained on multi-view images or a monocular video.
Qualitative Comparison. As illustrated in Fig. 3, SIAvatar
generates more photorealistic and detailed 3D avatars in novel
views and poses than state-of-the-art method. Specifically,
InstantAvatar [5], which utilizes NeRF [9] as implicit repre-
sentations, exhibits ghosting artifacts when rendering avatars
in novel views. GaussianAvatar [11] and ExAvatar [12] strug-
gle to generate high-quality avatars from challenging angles
due to their limited ability to extract meaningful 3D fea-
tures from a single image. In contrast, SIAvatar leverages
diffusion-based appearance prior and SMPL-X geometry
prior, enabling the faithful reconstruction and animation of
high-fidelity 3D human avatars across diverse views and
poses.

3.3. Ablation Study

As shown in Tab. 3 and Fig. 4, we conduct an ablation study
to verify the effect of the identity loss and the vertex-based
adaptive Gaussian densification scheme. Experimental results
demonstrate that incorporating the identity loss significantly
improves identity consistency, while the vertex-based adap-

Table 3. Ablation study of the identity loss and the vertex-
based adaptive Gaussian densification scheme.

Methods PSNR↑ SSIM↑ LPIPS↓
w/o Identity Loss 22.06 0.943 0.066
w/o Densification 22.06 0.942 0.075

SIAvatar (Ours) 22.12 0.944 0.066

GT SIAvatar (Ours) w/o Identity Loss w/o Densification

Fig. 4. Ablation study of the identity loss and the vertex-based
adaptive Gaussian densification scheme. Please zoom in for a
detailed view.

tive Gaussian densification scheme effectively mitigates arti-
facts and enhances the modeling of human geometry.

4. CONCLUSION

We present SIAvatar, a one-shot animatable 3D Gaussian
avatar reconstruction method that integrates diffusion-based
appearance prior and parametric human model geometry
prior within a 3DGS framework. A vertex-based adaptive
Gaussian densification scheme is designed for the density
control of 3D Gaussians, achieving accurate 3D Gaussian
representation of human geometry details. Comprehensive
experiments demonstrate that SIAvatar excels in realistic 3D
avatar reconstruction and robust novel pose animation from
a single image. Future work will explore relighting and
dynamic clothing modeling for 3D Gaussian avatars.
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