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Supplementary Materials
FaceLiVT: Face Recognition Using Linear Vision Transformer with Knowledge Distillation

This supplementary material provides implementation
specifics and extra quality comparisons to further illustrate
our method’s effectiveness and superiority over existing ap-
proaches. With these additional evaluations, we aim to offer a
thorough analysis and underscore the benefits of our approach.

A. Details of FaceLiVT Architecture
The macro-design approach of FaceLiVT is influenced by
MetaFormer [1], utilizing two stacked residual blocks. The
FaceLiVT model begins with a stem module, often featuring
two 3× 3 convolutions, each with a stride of 2. On the macro
level, the design uses a token mixer block for spatial feature
extraction, followed by a channel mixer block. Both blocks
include a normalization layer and use either residual or skip
connections to stabilize loss and improve training. Let Xi, X

′
i ,

and X ′′
i ∈ RHi×Wi×Ci denote the feature maps at stage i

with resolution Hi × Wi and Ci channels, with additional
operational details in Eq. (10).

X ′
i = Xi + TokenMixer(Xi),

X ′′
i = X ′

i + ChannelMixer(X ′
i),

(1)

TokenMixer(.) operator is set as either convolution mixer or
self-attention (refer to Table I). ChannelMixer(.) comprises
an MLP network, implemented by two fully connected linear
layers and one activation function, as described in Eq. (2):

MLP (X ′
i) = BN

(
σ
(
BN(X ′

i ∗We)
)
∗Wr

)
, (2)

where We ∈ RCi×rCi and Wr ∈ RrCi×Ci represent the
layer weights, r denotes the fully connected layer’s expansion
ratio, usually set to 3. The activation function σ is selected as
GELU(.).
Reparameterize Batch Normalization. In CNN facial recog-
nition systems, convolutional layers are often paired with
Batch Normalization (BN) layers [2], [3]. BN aids in speeding
up convergence and minimizing overfitting during training.
Nevertheless, it increases complexity and latency for inference.
Therefore, BN is integrated into the preceding convolution
layer, creating the FaceLiVT.

In a convolutional layer having a kernel size K, the weights
W are described by W ∈ RCo×Ci×K×K , and the bias b
by b ∈ RD. Here, Ci and Co refer to the input and output
channel dimensions, respectively. The convolution process
on the feature X ∈ RN×Ci×H×W is succeeded by Batch
Normalization (BN), which includes the accumulated mean
µ, accumulated standard deviation σ, feature scale γ, bias β,
and the convolution operation ∗. This is further elaborated in
Eq.(3).

BN(Conv(X)) = γ
(W ∗X + b)− µ

σ
+ β. (3)

As convolutions followed by BN during inference are linear
operations, these can be merged into a single convolution layer
with integrated BN, represented by Eq. (4):

BNConv(x) = W ′ ·X + b′, (4)
where the transformed weight is W ′ = W γ

σ and the adjusted
bias is b′ = (b−µ) γσ+β. BN is merged into the preceding con-

volutional layer across all branches, leaving only convolution
in the architecture.

Reparameterized Depth-Wise Convolution Mixer
(DWMix). The concept of convolutional mixing was
initially presented in ConvMixer [4]. For an input tensor Xi,
the mixing block within the layer was formulated as

X ′
i = Xi +BN(σ(DWC(Xi))), (5)

where σ denotes a non-linear activation function, and DWC is
a DepthWise Convolutional layer. Although this configuration
is proved quite effective, the authors of [5] modified the
sequence of operations and omitted the non-linear activation.
To improve the DWMix, we enhance it with a 1×1 DWC after
k × k DWC, which can enhance learnability during training.
X ′

i = Xi + {BN(DWCk×k(Xi) +DWC1×1(Xi))} . (6)
At inference time, reparameterizing the skip connection and
the 1×1 DWC into a single depthwise convolutional layer re-
duces computational and memory demands, benefiting mobile
devices.

Multi Head Self Attention. In vision transformers, the Multi-
Head Self-Attention (MHSA) mechanism enables the model
to assess token importance in a sequence for context and
prediction. For an input sequence X with N tokens, MHSA
calculates key K, query Q, and value V via linear transfor-
mations, where K,Q, V ∈ RB×He×N×C ; B is the batch size,
He is the number of heads, N is the token count, and C is
the channel dimension. MHSA details are in Eq. (7).

MHSA(Q,K, V ) = Concat(SA0, .., SAHe
)Wo. (7)

where SA refers to the self-attention operation in each head.
It calculates a weighted average of the values based on a
similarity score between pairs of input tokens as follows:

SA = Softmax

(
QKT

√
C

)
V. (8)

Given that QKT represents a matrix multiplication of size
N×N , this operation entails a high computational complexity
of O(N2).

Model Variant. Table I shows the detailed configuration of the
FaceLiVT variant with the proposed MHLA and conventional
Multi-Head Self Attention (MHSA). Downspl denotes the
down-sampling blocks to down-sample the feature map spa-
tially and embed the desired channel dimension. Dim denotes
the feature map channel dimension at stage-i. #Blocks denotes
the number of blocks (MLP + Token Mixer) in stage-i.

B. Detail of Experiment

Knowledge Distillation (KD). We utilize an efficient train-
ing method using a more complex network, specifically the
FaceLiVT-L (MHSA) variant as the ”Teacher” and the Face-
LiVT MHLA variant as the ”Student.” The distillation loss is
characterized by the mean squared error between the output
features of the teacher, X1, and the student, X2, as illustrated
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TABLE I
ALL VARIANT FACELIVT MODEL CONFIGURATIONS. #BLOCKS DENOTES

THE NUMBER OF FACELIVT BLOCKS.

Stage Size Layer FaceLiVT FaceLiVT-MHSA
S M S M M+

Stem 1122
Conv

Dims(Ci)
[3× 3, Stride 2]× 2

40 64 40 64 64

1 282
Mixer DWMix 3× 3
#Blocks 2 2 2 2 3

2 142

Downspl DWMix 3× 3, Stride 2
Dim(Ci) 80 128 80 128 128
Mixer DWMix 3× 3
#Blocks 4 4 4 4 3

3 72

Downspl DWMix 3× 3, Stride 2
Dim (Ci) 160 256 160 256 256
Mixer MHLA MHSA
#Blocks 6 6 6 6 9

4 42

Downspl DWMix 3× 3, Stride 2
Dim (Ci) 320 512 320 512 512
Mixer MHLA MHSA
#Blocks 2 2 2 2 3

Classifier Head Avg Pool, FC (512)

in the equation below.

Ldis =
1

N

N∑
i=0

√
(x1 − x2)2 (9)

L = Lcls + αLdis, (10)
The total loss is the combination of CosFace [6] as the clas-
sification loss function and the distillation loss with α = 0.5.
Training Setup. We adopt a training approach similar to [3],
[7], [8] using Glint360K [9]. The AdamW optimizer [10] is
applied with a polynomial decay learning rate schedule. The
learning rate begins at 6× 10−3 and decreases to a minimum
of 1× 10−5. A total batch size of 384 is employed across 3×
NVIDIA RTX-A6000 GPUs, with a weight decay of 1×10−4.
The model undergoes training for 20 epochs with a resolution
of (112× 112).

TABLE II
FACELIVT TRAINING HYPERPARAMETERS ON GLINT360K DATASETS

Hyperparameters Config
optimizer AdamW
learning rate 0.006

batch size 384
LR schedule polynomial

warmup epochs 0
training epochs 20
weight decay 0.0001

embedding size 512

C. Ablation Study
Three main factors affect FaceLiVT-S’s performance: knowl-
edge distillation, structural reparameterization, and the MHLA
mechanism. This ablation study focuses on the latter two.
Table III demonstrates that structural reparameterization sig-
nificantly reduces latency; removing it from residual or skip
connections increases latency from 0.47 ms to 0.50 ms,
indicating its role in speeding up computation. Additionally,
removing fused Batch Normalization (BN) raises latency to
0.60 ms, highlighting its importance for runtime efficiency.
These enhancements do not change the model parameters
(Param) or computational costs (FLOP), thereby improving
the processing pipeline without adding complexity.

TABLE III
EFFECT OF STRUCTURAL REPARAMETERIZATION

Ablation Param FLOP Latency
(M) (M) (ms)

FaceLiVT-S 5.05 160 0.47
w/o Residual Rep 4.09 160 0.50
w/o fused BN 4.10 163 0.60

Table IV presents the effects of modifying He, the number
of heads in MHLA. Decreasing the heads to 8 cuts the
parameter count to 4.09 M and slightly reduces FLOPs to 157
M, improving latency to 0.41 ms, but results in a slight drop
in accuracy, achieving 99.6% on LFW and 93.9% on CFP-FP.
In contrast, increasing He to 16 boosts accuracy to 94.6% on
CFP-FP and 95.6% on AgeDB-30, with a minor increase in
computational demand and latency (now 0.48 ms), suggest-
ing that raising He enhances the model’s ability to capture
complex features, albeit with reduced runtime efficiency.

TABLE IV
ABLATION OF NUMBER HEAD He

He
Par FLOP LFW CFP- Age Lat
(M) (M) FP DB-30 (ms)

8 4.09 157 99.6 93.9 95.0 0.41
16 5.05 160 99.6 94.6 95.6 0.48

The ablation study reveals that structural reparameterization
methods and selecting He in MHLA are essential for enhanc-
ing accuracy and latency in FaceLiVT-S-(LA). Furthermore,
knowledge distillation improves accuracy without impacting
latency. The ideal configuration, which includes fused BN,
residual reparameterization, and He = 16, successfully bal-
ances high accuracy and low latency, making it suitable for
real-time applications.
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