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ABSTRACT
This paper presents FaceLiVT, a lightweight yet power-
ful face recognition model that combines a hybrid CNN-
Transformer architecture with an innovative and lightweight
Multi-Head Linear Attention (MHLA) mechanism. By incor-
porating MHLA alongside a reparameterized token mixer,
FaceLiVT effectively reduces computational complexity
while preserving high accuracy. Extensive evaluations on
challenging benchmarks—including LFW, CFP-FP, AgeDB-
30, IJB-B, and IJB-C—highlight its superior performance
compared to state-of-the-art lightweight models. The inte-
gration of MHLA significantly enhances inference speed, en-
abling FaceLiVT to achieve competitive accuracy with lower
latency on mobile devices. Notably, FaceLiVT is 8.6× faster
than EdgeFace, a recent hybrid CNN-Transformer model op-
timized for edge devices. With its balanced design, FaceLiVT
provides a practical and efficient solution for real-time face
recognition on resource-constrained platforms.

Index Terms— Face Recognition, Vision Transformer,
Multi-Head Linear Attention (MHLA), Structural Reparam-
eterization, Lightweight Model

1. INTRODUCTION

Face recognition is an important technique for identity veri-
fication in contemporary life, widely used in mobile and em-
bedded systems for functions like device unlocking, APP ac-
cess, and mobile transactions. In certain applications, such
as smartphone unlocking, it requires local deployment of face
verification [1]. To maintain ease of use with limited com-
putational resources, it is crucial for mobile face verification
models to be both precise and efficient. Despite advances
in accuracy, cutting-edge face recognition models often use
deep neural networks with numerous parameters, necessitat-
ing substantial memory and computation. Thus, deploying
these advanced models on resource-limited devices, such as
mobile platforms, remains a challenging task.

In order to tackle the challenges related to the mem-
ory and computational demands of cutting-edge deep neu-
ral networks, researchers are concentrating on developing
lightweight and efficient neural networks for computer vision
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applications. These networks aim to strike a more favor-
able balance between recognition accuracy and the neces-
sary memory and computational resources. Recently, there
have been efforts to employ lightweight convolutional neural
network (CNN) architectures, like MobileNetV1 [1], Mo-
bileNetV2 [2], and ShuffleNet [3], which have been proposed
for common facial verification tasks. CNN-based models
exhibit reduced model parameters and computational com-
plexity, yet they might experience diminished accuracy levels
because of the limitations in the receptive field and insuffi-
cient modeling of long-range dependencies.

Recently, transformer-based vision models have achieved
remarkable success across various computer vision tasks [4,
5]. This success is largely attributed to their capacity to utilize
global receptive fields and long-range dependencies, thereby
outperforming CNNs in terms of performance [6]. Neverthe-
less, these models frequently demand considerable compu-
tational resources due to their quadratic computational com-
plexity. For example, the original Vision Transformer (ViT)
requires between 85 million and 632 million parameters for
ImageNet classification. In face recognition tasks [7], ViT’s
computational requirements are notably high, ranging from
1.5 GFLOPs for ViT-T to 25.4 GFLOPs for ViT-L, render-
ing it less ideal for mobile applications [8]. Some alternative
methodologies, such as EdgeFace [9], aim to decrease param-
eter counts and complexity by employing Low-Rank approx-
imation with a sequence of two linear layers. However, this
approach can result in slower inference speeds.

This paper introduces Linear Vision Transformer for
Face Recognition (FaceLiVT) with Multi-Head Linear Atten-
tion (MHLA), an innovative and lightweight face recog-
nition model characterized by a hybrid architecture that
leverages the strengths of CNN and ViT. FaceLiVT incor-
porates two distinct types of token mixers: RepMix, which
involves depth-wise convolution with a reparameterized ker-
nel and residual in the initial stage, and MHLA in the final
stage. MHLA involves replacing the high computation of
Multi-Head Self-Attention (MHSA), thereby reducing both
the number of parameters and the floating-point operations
(FLOPs) required. Through comprehensive experiments on
challenging benchmark face datasets—such as LFW, CFP-
FP, AgeDB-30, IJB-B, and IJB-C—we demonstrate the ef-
fectiveness and efficiency of FaceLiVT compared to leading
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lightweight and deep face recognition models, highlighting
its suitability for deployment on resource-constrained mobile
devices. The key contributions of this paper are:

1. We propose FaceLiVT, an efficient and lightweight
face recognition network that combines CNN and ViT
features through reparameterization, enabling real-time
performance on resource-constrained platforms.

2. We introduce a Multi-Head Linear Attention (MHLA)
module to reduce computational cost with linear lay-
ers while maintaining performance. MHLA replaces
Self-Attention to capture spatial correlations with low
complexity. To our knowledge, this is the first Hy-
brid CNN-Transformer incorporating MHLA for effi-
cient face recognition.

3. We conduct extensive experiments on challenging face
recognition datasets, demonstrating FaceLiVT’s su-
perior performance over existing lightweight models,
along with its efficiency in mobile inference.

This paper is organized as follows: Section 2 presents a
concise review of related works and Section 3 offers an in-
depth description of the proposed FaceLiVT model. Section
4 outlines the experimental design. Section 5 concludes the
paper and proposes directions for future research.

2. RELATED WORKS

MobileFaceNets [1, 2] represent a collection of efficient con-
volutional neural network models based on the MobileNetV1
and MobileNetV2 framework, designed specifically for appli-
cations in real-time face verification [2]. MobileFaceNetV1,
based on the MobileNetV1 model, has achieved an accuracy
of 99.4% on the LFW dataset, while MobileFaceNet, based
on the MobileNetV2 architecture, achieved an accuracy of
99.7% on the LFW dataset, while maintaining a parameter
count below 1 million. Inspired by ShuffleNetV2, a series
of lightweight FR models termed ShuffleFaceNet was intro-
duced in [3]. These models feature parameters ranging from
0.5 million to 4.5 million and have shown verification accura-
cies surpassing 99.20% on the LFW dataset.

Another approach aims to develop a face recognition
model based on the original Vision Transformer (ViT) [7, 8].
This ViT achieves high accuracy on several benchmark
datasets but exhibits a significant complexity of 1.5 GFLOPs,
rendering it impractical for mobile applications. Based on
the EdgeNeXt architecture, which serves as a hybrid model
integrating the strengths of Transformers and CNNs, Edge-
Face [9] is designed to decrease both the parameter count and
floating-point operations (FLOPs) of this architecture, reduc-
ing parameters from 2.24 to 1.77 million and FLOPs from
196.9 to 153.9 million. This can be accomplished through
low-rank linear approximation using a sequence of two linear

layers, though it may result in reduced latency on mobile
devices due to the use of two linear layers instead of one.

3. PROPOSED METHOD

3.1. Architecture

The prevailing macro-design approach for the FaceLiVT is
largely influenced by MetaFormer [10, 11], which employs
two stacked residual blocks, as depicted in Fig. 1. It initi-
ates with a stem module that typically includes a pair of 3× 3
convolutions, each with a stride of 2. From the macro per-
spective, the architecture incorporates a token mixer block
for the extraction of spatial features, succeeded by a chan-
nel mixer block. Each block is equipped with a normaliza-
tion layer and either residual or skip connections to stabilize
the loss and enhance the training process. Let Xi, X

′
i , and

X ′′
i ∈ RHi×Wi×Ci represent the feature maps at stage i with

a resolution of Hi ×Wi and Ci channels with different oper-
ators; further details of the block are provided in Eq. (1) as

X ′
i = Xi + TokenMixer(Xi),

X ′′
i = X ′

i + ChannelMixer(X ′
i),

(1)

where TokenMixer(.) operator is configured as a convo-
lution mixer or self-attention (see Table 1). ChannelMixer(.)
contains the Multi-Layer Perceptron (MLP) network that is
conducted by two linearly fully connected layers followed by
Batch Normalization (BN) and a single activation function
that can be expressed in Eq. (2) as follows:

MLP (X ′
i) = BN

(
σ
(
BN(X ′

i ∗We)
)
∗Wr

)
, (2)

where We ∈ R(Ci)×rCi and Wr ∈ R(rCi)×Ci are the layer
weights, r is the expansion ratio of the fully connected layer
with a default value of 3. Operation σ is chosen using the
activation function GELU(.).

3.2. Structural Reparameterization

3.2.1. Fused Batch Normalization

In CNN-based facial recognition systems, convolutional lay-
ers are commonly combined with Batch Normalization (BN)
layers [1, 3]. Adding BN after convolution is fundamental for
improving convergence and reducing overfitting in training.
However, it also elevates complexity and latency during in-
ference. To resolve this, the BN is merged into the preceding
convolution layer to form the FaceLiVT.

Convolutional layer with kernel size K, the weight ma-
trix W is defined as W ∈ RCo×Ci×K×K , and the bias b as
b ∈ RD, where Ci and Co are the input and output channel
dimensions, respectively. The convolution on feature X ∈
RN×Ci×H×W is followed by BN, involving the accumulated
mean µ, accumulated standard deviation σ, feature scale γ,



Fig. 1. FaceLiVT architecture with Multi-Head Linear Attention (MHLA) and structural reparameterization. Stages 1 and 2
use the RepMix and the last stage used MHLA as token mixer. (a) FaceLiVT Block. (b) RepMix. (c) MHLA.

bias β, and convolution operation ∗, as described in Eq.(3).

BN(Conv(X)) = γ
(W ∗X + b)− µ

σ
+ β. (3)

As convolutions followed by BN during inference are lin-
ear operations, these can be merged into a single convolution
layer with integrated BN, represented by Eq. (4):

BNConv(x) = W ′ ·X + b′, (4)

where the transformed weight is W ′ = W γ
σ and the adjusted

bias is b′ = (b − µ) γσ + β. BN is merged into the preceding
convolutional layer across all branches, leaving only convo-
lution in the architecture.

3.2.2. Reparameterized Token Mixer (RepMix)

The concept of convolutional mixing was initially presented
in ConvMixer[12]. For an input tensor Xi, the mixing block
within the layer was formulated as

X ′
i = Xi +BN(σ(DWC(Xi))), (5)

where σ denotes a non-linear activation function, and DWC
is a DepthWise Convolutional layer. Although this configura-
tion is proved quite effective, the authors of [13] modified the
sequence of operations and omitted the non-linear activation.
To improve the RepMix, we enhance it with a 1×1 DWC after
k × k DWC, which can enhance learnability during training.

X ′
i = Xi + {BN(DWCk×k(Xi) +DWC1×1(Xi))} . (6)

To reduce the computational load and memory requirements
of both the skip connection and the 1× 1 DWC, these can be

reparameterized into a single depthwise convolutional layer
at inference time, which is especially beneficial for mobile
devices.

3.3. Multi Head Self Attention

In vision transformers, the Multi-Head Self-Attention (MHSA)
mechanism allows the model to evaluate token significance
in a sequence for prediction and context. For an input se-
quence X with N tokens, MHSA computes key K, query Q,
and value V through linear transformations, with K,Q, V ∈
RB×He×N×C , where B is the batch size, He is the number of
heads, N is tokens, and C is the channel dimension. Details
of MHSA are outlined in Eq. (7).

MHSA(Q,K, V ) = Concat(SA0, .., SAHe)Wo. (7)

SA = Softmax

(
QKT

√
C

)
V. (8)

where SA refers to the self-attention operation in each head.
It calculates a weighted average of the values based on a sim-
ilarity score between token pairs as described in Eq.8.

3.4. Multi Head Linear Attention

To reduce the computational demands while maintaining
the understanding of long-range context, we present ”Multi-
Head Linear Attention” (MHLA). Let X ∈ RB×C×H×W

denote the feature map with a resolution of H × W and
C channels. It is first transformed to a 1D representation
with N tokens, making it X ∈ RB×C×N . Subsequently,
it will be divided across channels into He heads, resulting



in XHe
∈ RB× C

He
×N . The details of MHLA are defined as

follows:

MHLA(Q,K, V ) = Concat(LA0, .., LAHe
), (9)

where LAHe
in each head comprises a sequence of two

weighted linear operations with non-linear activation func-
tions to evaluate spatial relationships among input tokens.
LAHe in each head can be expressed as:

LAHe(XHe) =
(
Wo

(
σ(XHe ·Wi)

))
, (10)

with Wi ∈ RN×Nr and Wo ∈ RNr×N denoting the linear
weights. In addition, Nr is the number of tokens with the
expansion ratio r. When XHe is multiplied by weights Wi

and Wo, the computational complexity, which depends on Nr
with total complexity of Ω(MHLA) = 2(NNr)C. The to-
tal complexity of MHLA is lower than the Ω(MHSA) =
4NC2 + 2N2C [14].

Table 1. All Variant FaceLiVT Model configurations.
#Blocks denotes the number of FaceLiVT blocks.

Stage Size Layer FaceLiVT
S M S-(Li) M-(Li)

Stem 1122
Conv

Dims(Ci)
[3× 3, Stride 2]× 2

40 64 40 64

1 282
Mixer RepMix 3× 3
#Blocks 2 2 2 2

2 142

Downspl RepMix 3× 3, Stride 2
Dim(Ci) 80 128 80 128
Mixer RepMix 3× 3
#Blocks 4 4 4 4

3 72

Downspl RepMix 3× 3, Stride 2
Dim (Ci) 160 256 160 256
Mixer MHSA MHLA
#Blocks 6 6 6 6

4 42

Downspl RepMix 3× 3, Stride 2
Dim (Ci) 320 512 320 512
Mixer MHSA MHLA
#Blocks 2 2 2 2

Classifier Head Avg Pool, FC (512)

4. EXPERIMENTS

4.1. Traning and Testing Details

FaceLiVT trained with the Glint360K dataset [17], which
consists of pre-aligned 112 × 112 resolution facial images.
They were transformed into tensors and normalized between
-1 and 1. Training was performed with a batch size of 256
in each of three RTX A6000 (40GB) GPUs. AdamW opti-
mizer with a learning rate of 6× 10−3, the CosFace [18] loss

function, and a polynomial decay learning rate schedule were
used with a 512-dimensional embedding size in the PartialFC
[17] training algorithm.

We evaluated the proposed FaceLiVT model utilizing
seven diverse benchmark datasets, including LFW [19], CFP-
FP [20], AgeDB-30 [21], IJB-B [22], and IJB-C [23]. We
provide the True Accept Rate (TAR) at a False Accept Rate
(FAR) of 1e-4 for IJB-B and IJB-C datasets. In the inference
speed test, the model was converted with coremltools and
measured the latency on the iPhone 15 Pro.

4.2. Benchmarking Result

Table 2 provides a comparison of several face recognition
models, including the FaceLiVT variants, against state-of-
the-art models, with respect to parameters, computational cost
(FLOP), accuracy on benchmark datasets, and mobile latency.
We categorized models based on the number of FLOP around
300-1100 M FLOP and <300 M FLOP. The FaceLiVT mod-
els, which utilize a Hybrid Vision Transformer (ViT) struc-
ture, demonstrate a balance between computational efficiency
and accuracy performance. In comparison with conventional
CNN-based models such as MobileFaceNet and Shuffle-
FaceNet, the FaceLiVT models typically achieve superior
accuracy on rigorous benchmarks like CFP-FP, AgeDB-30,
IJB-B, and IJB-C, highlighting the advantages of the Hy-
brid ViT architecture in managing diverse and complex facial
variations.

The integration of MHLA in the ”LA” variants of Face-
LiVT significantly lowers latency while preserving compet-
itive accuracy. For instance, the FaceLiVT-M(LA) model
delivers high performance on all benchmark datasets with a
similar inference speed from FaceLiVT-S that used MHSA.
Moreover, it can achieve competitive accuracy with 8.6 ×
faster than EdgeFace-XS(0.6), the recent hybrid ViT for face
recognition, and 21.2 × faster than pure ViT-Based model.
This underscores the capability of MHLA in enhancing com-
putational efficacy while maintaining a satisfactory level of
accuracy. It also indicates that MHLA can greatly improve
real-time usability on mobile platforms. Besides its effi-
ciency, MHLA may limit the model’s capacity to capture
complex long-range dependencies compared to MHSA, espe-
cially in highly unconstrained environments that lead to slight
performance degradation.

4.3. Ablation Study

We conduct a 20 epoch ablation study to identify two key
factors affecting the performance of FaceLiVT-S-(LA): struc-
tural reparameterization and the count of heads (He) MHLA
mechanism. According to Table 3, structural reparameteriza-
tion is pivotal in enhancing the latency of FaceLiVT-S-(LA).
Eliminating reparameterization for residual and BN raises the
latency from 0.47 ms to 0.50 ms and 0.60 ms, thus highlight-



Table 2. Comparison of FaceLiVT Variant with State-Of-The-Art on Face Recognition Benchmark Dataset.

Model Type Param FLOP Train LFW CFP Age IJB Lat
(M) (M) Epoch -FP DB-30 B C (ms)

ViT-S [8] ViT 86.6 5,713 40 99.8 98.9 98.3 - 96.7 14.23
TransFace-S [8] ViT 86.7 5,824 40 99.9 98.9 98.5 - 97.3 14.31
MobileFaceNet[2] CNN 2.0 933 20 99.7 96.9 97.6 92.8 94.7 0.77
MobileFaceNetV1[2] CNN 3.4 1100 20 99.4 95.8 96.4 92.0 93.9 0.81
SwiftFaceFormer-L1 [15] Hybrid 11.8 805 35 99.7 96.7 97.0 91.8 93.8 1.50
ShuffleFaceNet-1.5[2] CNN 2.6 577 20 99.7 96.9 97.3 92.3 94.3 0.69
EdgeFace-S(0.5) [9] Hybrid 3.6 306 50 99.8 95.8 96.9 93.6 95.6 10.21
GhoseFaceNet-V2-1 [16] CNN 6.88 272 50 99.9 98.9 98.5 95.7 97.0 0.71
FaceLiVT-M Hybrid 14.3 569 20 99.8 97.1 97.2 93.4 95.0 1.11

FaceLiVT-M-(LA) Hybrid 9.75 386 20/
40

99.7/
99.8

96.0/
97.2

96.7/
97.6

92.5/
93.7

94.1/
95.7 0.67

ShuffleFaceNet-0.5 [2] CNN 1.4 66.9 20 99.2 92.6 93.2 - - 0.45
EdgeFace-XS(0.6) [9] Hybrid 1.77 154 50 99.7 94.4 96.0 92.7 94.8 5.82
FaceLiVT-S Hybrid 5.89 237 20 99.7 95.2 96.3 89.1 89.7 0.61

FaceLiVT-S-(LA) Hybrid 5.05 160 20/
40

99.6/
99.7

94.6/
95.1

95.6/
96.6

83.4/
91.2

82.5/
92.7 0.47

ing the effectiveness of this approach in boosting computa-
tional speed. Additionally, removing DWC1×1 as weight re-
finement emphasizes its significance in accuracy around 0.9%
in CFP-PP and 1.0% for Age DB-30. Importantly, these en-
hancements do not affect the model parameters (Param) or
computational cost (FLOP), indicating that these methods re-
fine the processing pipeline without impacting the model’s
overall complexity.

Table 4 shows the impact of He, the number of heads in
MHLA, is assessed. Reducing the He to 8 decreases the pa-
rameter count to 4.09 M and slightly reduces FLOPs to 157
M, which enhances latency to 0.41 ms. Nevertheless, this ad-
justment leads to a minor decline in accuracy, with model per-
formance registering at 99.6% on LFW and 93.9% on CFP-
FP. Conversely, increasing He to 16 enhances accuracy to
94.6% on CFP-FP and 95.6% on AgeDB-30, accompanied by
a slight rise in computational demands and latency (now 0.48
ms). This indicates that augmenting He bolsters the model’s
capability to grasp complex features at the expense of a slight
decrease in runtime efficiency.

The ablation study indicates that structural reparameteri-
zation methods and the selection of He in MHLA are criti-
cal factors for balancing accuracy and latency in FaceLiVT-
S-(LA). The best configuration, which includes fused BN,
residual reparameterization, and He = 16, provides an ad-
vantageous trade-off by achieving high accuracy with mini-
mal latency, rendering it suitable for real-time applications.

Table 3. Ablation of RepMixer block in FaceLiVT-S-(LA)
Ablation Par FLOP LFW CFP Age Lat

(M) (M) -FP DB-30 (ms)
Baseline 5.05 160 99.6 94.9 95.6 0.47
w/o Res Rep 5.05 160 99.6 94.9 95.6 0.50
w/o fused BN 5.10 160 99.6 94.9 95.6 0.60
w/o DWC1×1 5.05 160 99.6 93.5 94.6 0.47

Table 4. Ablation of FaceLiVT-S(LA) that using MHLA, The
ablation shows the effect of number head He

He
Par FLOP LFW CFP Age Lat
(M) (M) -FP DB-30 (ms)

8 4.09 157 99.6 93.9 95.0 0.41
16 5.05 160 99.6 94.6 95.6 0.48

5. CONCLUSION

The paper introduces FaceLiVT, a CNN-Transformer archi-
tecture with structural reparameterization and Multi-Head
Linear Attention (MHLA) for effective face recognition on
mobile platforms. Experiments on benchmarks such as LFW,
AgeDB-30, CFP-FP, IJB-B, and IJB-C revealed the supe-
rior accuracy-latency balance over other lightweight models.
MHLA significantly boosts inference speed while maintain-
ing competitive performance, and reparameterization reduces
computational cost without compromising accuracy. Al-
though MHLA enhances speed and efficiency, its ability in
complex long-range dependencies is less robust than full
self-attention, affecting performance in environments with
occlusions. Future work could explore MHLA to retain effi-
ciency while enhancing contextual understanding.
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