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1. BASELINE ARCHITECTURE

1.1. Detailed baseline architecture

Overview. The network takes as input M and N visual de-
scriptors and keypoint positions from images A and B, in-
dexed by A := {1, ...,M} and B := {1, ..., N}, respec-
tively. The input descriptors and keypoint positions are de-
noted as {0xI

i }i and {0pI
i }i, respectively, where I ∈ {A,B}.

The network updates these descriptors by L attentional lay-
ers. Finally, the network outputs a partial assignment matrix
P ∈ [0, 1]M+1×N+1 whose (i, j) element represents the con-
fidence that the i-th keypoint in the image A matches with the
j-th one in the image B. The last column and row of P repre-
sent dustbins for unmatched keypoints. We obtain point cor-
respondences by selecting the pairs with confidences larger
than the threshold τ .

Positional encoding Our network uses positional encod-
ing that encodes absolute keypoint positions, similar to the
existing matchers [1, 2]. In our architecture, positional en-
coding is applied in each layer. The positional encoding in
the ℓ-th layer is calculated as follows:

ℓ−1xI
i ←ℓ−1 xI

i +MLP(0pI
i ). (1)

where ℓ−1xI
i denotes the descriptors updated from ℓ − 1-th

layer. Some keypoint detectors, such as SIFT [3], provide the
orientation φi and scale ηi of each keypoint as well as the
position. These geometric information is incorporated to the
positinoal encodings [4] as follows:

xI
i ← xI

i +MLP(
[
pI
i | cosφI

i | sinφI
i |ηIi

]
). (2)

Self-Cross attention. The ℓ-th attentioanl layer takes as
input descriptors {l−1xI

i }i and update them to {lxI
i }i. The

layer subscripts are omitted hereafter for ease of reading. De-
scriptors are updated on the basis of the message passing style
like SuperGlue as follows:

xI
i ← xI

i +MLP
([
xI
i |mI←S

i

])
, (3)

where MLP, [·|·], and mI←S denote a Multi-Layer Percep-
tron (MLP), concatenation, and a mesasge from a source im-
age S ∈ {A,B} to a target image I , respectively. The mes-
sages are calculated on the basis of the attention mechanism.
Self attention computes a message mI←I

i and cross attention

Fig. 1: An example of data augmentation

computes mI←S
i , where S = {A,B}\I . In the attention

computation, the descriptors are converted by learnable linear
transformations to queries, keys and values as qi = Wqx

I
i ,

kj = Wkx
S
j and vj = Wvx

S
j , respectively. Let K and V

be K = [k1, ...,k|S|] ∈ Rd×|S| and V = [v1, ...,v|S|] ∈
Rd×|S|, respectively. The message mI←S

i is computed by at-
tention as

mI←S
i

⊤
= Softmax

(
qi
⊤K√
d

)
V⊤. (4)

We extend all the above attentions to multi-head ones in prac-
tical implementation.

Matching module. This module in the ℓ-th block tem-
porarily performs matching to obtain an assignment matrix
P. The calculation method follows the approace proposed in
LightGlue. First, a score matrix S ∈ RM×N is computed as
follows:

Si,j = Linear(xA
i )
⊤Linear(xB

j ), (5)

where Linear is a linear transformation with learnable param-
eters. Next, the score σI

i is computed by

σI
i = Sigmoid(Linear(xI

i )). (6)

Finally, the assignment matrix is obtained as:

Pi,j = σA
i σ

B
j Softmax(Si,j)iSoftmax(Si,j)j . (7)

2. TRAINING

2.1. An example of strong data augmentation

We applied strong data augmentation, including large scale
and rotation changes, as described in the paper. Fig. 1 shows
an example of an augmented image pair.



Fig. 2: An example of a rotated image pair (Rotation angle
is 225°).

Fig. 3: An example of a scaled image pair (Scaling factor
is 3.0).

2.2. Other details about training

We trained local feature matchers by only MegaDepth dataset.
Unlike existing works [1, 5], homography pre-training is not
performed. For both SIFT and SuperPoint, we extract 2048
keypoints from each training image. We trained local fea-
ture matchers for 60 epochs without data augmentation. If
the data augmentation is applied, matchers are trained for 180
epochs due to increased training difficulty and slower con-
vergence. We employed the Adam optimizer with a learning
rate of 10−4. For training with data augmentation, the learn-
ing rate is exponentially decayed by 0.95 in each epoch after
120 epoch. Note that the parameters of SuperPoint are frozen
during training, and only matchers are trained.

3. EXPERIMENTAL DETAILS

3.1. Experiments on Homography estimation

Experimental setup of rotation test. For the rotation evalu-
ation, we rotate an image of an image pair from 0° to 315° in
45° increment, creating eight datasets for the respective rota-
tion angles. Fig. 2 shows an example of rotated image pairs.
We resize images so that their smaller dimension is 480 and
extract 1024 local features per images with NMS of 3 pixel.
Note that rotated images have the same resolution except for
the empty black areas in Fig. 2.

Experimental setup of rotation test. For the scale eval-

uation, one of the two images is scaled by the factor of 1.0,
2.0 and 3.0 to create 3 datasets. Fig. 3 shows an example of
scaled image pairs. We resize reference images so that their
smaller dimension is 300 and extract 1024 local features per
images with NMS of 3 pixel. Target images are resized so
that their smaller dimension is 300, 600, and 900 for respec-
tive scaling factors.

Experimental setup of SIM2E. For SIM2E dataset, we
resized all images so that their smaller dimension is 480 and
extracted 1024 local features per image with NMS of 3 pixel.
Table 2 shows the results for the overall SIM2E dataset. SN
and DA are effective also for SIM2E.

3.2. Experiments on MegaDepth1500

We resized images so that their larger dimension is 1600 and
extracted 2048 local features per images. NMS radius of Su-
perPoint and SIFT is 3 and 5, respectively. We split image
pairs of MegaDepth1500 according to scale changes between
the pairs. A scale change between image pairs is defined as
described below. First, we detect keypoints using SuperPoint
for all the images in MegaDepth1500. Then, GT point cor-
respondences for each image pair are obtained using a GT
essential matrix and intrinsic parameters. We calculate a co-
variance matrix CI ∈ R2×2 for keypoint positions for each
image and the two eigenvalues (eI1, eI2), where I denotes the
index of an input image, namely, I ∈ A,B. We denote the
larger eigenvalue and the smaller eigen value for each image
as eIlarger and eIsmaller, which is defined as

eIlarger = max
{
eI1, e

I
2

}
, eIsmaller = min

{
eI1, e

I
2

}
. (8)

Finally, the scale gap g between the image pair is defined as

g = max

{
max

{√
eAlarger√
eBlarger

,

√
eBlarger√
eAlarger

}

,max

{√
eAsmaller√
eBsmaller

,

√
eBsmaller√
eAsmaller

}}
.

(9)

4. QUALITATIVE VISUALIZATION

Fig. 4 and 5 show qualitative visualizations on SIM2E dataset
using SIFT and SuperPoint, respectively.



matcher HPatches (Rotation) HPatches (Scaling)

prec DLT LO-RANSAC prec DLT LO-RANSAC
@3px 1px 3px / 5px 1px 3px / 5px @10px 5px / 10px / 15px 5px / 10px / 15px

SI
FT

NN (ratio test) 84.7 1.1 / 3.8 / 5.4 21.2 / 55.9 / 68.5 86.5 6.2 / 9.8 / 12.7 57.8 / 71.1 / 76.7
SGMNet 78.1 10.2 / 31.2 / 40.8 20.2 / 50.8 / 62.2 95.5 52.0 / 67.9 / 74.9 63.7 / 76.9 / 82.4
LightGlue 85.1 15.4 / 43.3 / 54.4 22.1 / 57.7 / 70.0 95.2 54.4 / 68.6 / 75.0 65.3 / 78.5 / 83.8
Baseline 45.2 8.1 / 19.3 / 23.7 12.8 / 28.2 / 34.1 93.8 51.2 / 66.0 / 72.8 65.0 / 78.1 / 83.3
+SN 89.2 19.5 / 56.5 / 69.3 23.6 / 62.4 / 74.7 95.6 54.5 / 69.5 / 76.3 65.2 / 78.2 / 83.6
+DA 92.1 21.7 / 59.1 / 71.6 23.7 / 62.8 / 75.1 97.1 56.9 / 71.8 / 78.3 65.3 / 78.7 / 84.0
+SN+DA 92.1 21.7 / 59.4 / 71.9 23.6 / 62.9 / 75.1 97.0 57.6 / 72.8 / 79.5 65.3 / 78.7 / 84.0

Su
pe

rP
oi

nt

NN mutual 14.7 0.0 / 0.2 / 0.4 7.3 / 17.9 / 22.4 59.5 4.1 / 6.4 / 8.0 47.8 / 63.3 / 70.4
SuperGlue 35.4 11.3 / 24.0 / 28.5 13.5 / 26.9 / 31.3 96.8 59.8 / 75.5 / 81.7 62.5 / 78.0 / 83.8
SGMNet 33.9 9.3 / 21.9 / 26.6 13.3 / 31.9 / 27.9 95.1 51.3 / 68.4 / 75.8 43.4 / 63.2 / 72.4
LightGlue 33.7 10.8 / 22.9 / 27.1 12.0 / 24.2 / 28.4 97.3 60.1 / 76.1 / 82.3 62.1 / 77.7 / 83.7
Baseline 31.6 8.3 / 19.4 / 23.7 11.1 / 22.7 / 26.9 95.2 56.2 / 72.6 / 79.3 61.3 / 76.8 / 82.7
+SN 32.5 9.0 / 19.0 / 24.0 11.4 / 23.2 / 27.4 95.4 54.7 / 71.7 / 78.8 60.3 / 76.1 / 82.2
+DA 86.9 28.6 / 62.5 / 73.8 32.2 / 66.3 / 77.2 94.4 55.7 / 71.2 / 77.4 60.4 / 75.6 / 81.4
+SN+DA 87.9 30.1 / 64.0 / 75.4 32.6 / 66.8 / 77.8 96.4 57.4 / 73.7 / 80.3 61.4 / 77.2 / 83.3

Table 1: Results on HPtaches and Rotated HPatches. Best and second-best values are in bold and underlined, respectively.

matcher prec AUC DLT AUC RANSAC
3px 1px / 5px 1px / 5px

SI
FT

NN (ratio test) 81.8 1.4 / 4.5 33.2 / 73.0
SGMNet 71.8 13.0 / 38.1 32.2 / 64.6
LightGlue 76.9 16.1 / 43.2 34.8 / 73.8
Baseline 34.6 8.6 / 17.6 17.5 / 29.6
Baseline+SN 86.4 23.9 / 63.2 37.5 / 79.7
Baseline+DA 90.5 28.8 / 69.5 38.1 / 80.4
Baseline+SN+DA 90.9 29.2 / 70.3 38.1 / 80.5

Su
pe

rP
oi

nt

NN mutual 10.8 0.0 / 0.1 8.3 / 18.2
SuperGlue 30.3 10.8 / 23.1 17.5 / 30.5
SGMNet 28.7 8.6 / 20.6 17.3 / 31.2
LightGlue 25.6 10.0 / 20.4 13.6 / 24.1
Baseline 23.9 7.7 / 17.7 12.6 / 22.7
Baseline+SN 23.8 8.5 / 18.5 13.0 / 23.0
Baseline+DA 88.2 34.5 / 73.2 48.4 / 86.3
Baseline+SN+DA 90.0 36.6 / 74.9 49.4 / 87.1

Table 2: Results on SIM2E. Best and second-best values are
in bold and underlined, respectively.
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Fig. 4: Visualizations on SIM2E (SIFT). Green and red lines represent true and false matches, respectively.



Fig. 5: Visualizations on SIM2E (SuperPoint). Green and red lines represent true and false matches, respectively.


