
SUPPLEMENTARY MATERIALS FOR EVENT DENOISING BASED ON ITERATIVE
TREE-STRUCTURED INFORMATION AGGREGATION

1. SCHEMATIC DIAGRAM OF THE ITERATIVE
INFERENCE PROCESS

The iterative inference process can be divided into two steps
which is illustrated in Figure 6. The detailed description is as
follows:

(1) Establish connections. For the current event enew =
{xnew, ynew, tnew, pnew}, identify the pixel set satisfying
x ∈ [xnew −W,xnew +W ] and y ∈ [ynew −H, ynew +H]
(excluding (xnew, ynew)) and find events with timestamps
greater than tnew − T as child nodes from the time regis-
ter. If the number of satisfying pixels exceeds the tree degree
Kd, use nearest neighbor pruning (NNP) to select the near-
est points. The results of the above process correspond com-
pletely to those in Section 3.1.

(2) Feature aggregation. After determining the child
events of the latest event, the x and y coordinates along with
the timestamp of the child events form the 0th-order feature
set. Applying the first-order convolution from Section 3.2 to
the child nodes’ 0th-order features yields the latest event’s
1st-order features. Next, reset and write operations are per-
formed: select the register group with the smallest value in
the timestamp register at the pixel of the latest event, update
it with the latest timestamp tnew, set the feature registers from
1st to D−1 to 0, and write the new event’s first-order features
into the reset feature registers. If the event has no child nodes,
it is still necessary to reset and write to the time register.

The higher-order convolution of the algorithm is the same
as the 1st-order convolution, and the classification module is
consistent with the one introduced in Section 3.2.

2. ABLATION STUDY

In the detailed experimental setup, the role of the attention
branch in high-order convolution modules is analyzed by re-
moving the branch and retraining the model for evaluation.
For the depth of the Relation Tree, configurations of D = 1,
D = 2, and D = 4 are explored; for the degree of the Re-
lation Tree, values of Kd = 8, Kd = 16, and Kd = 48 are
tested. Additionally, the hyperparameter Kp for PCP pruning
and the hyperparameters H/W and T for the Spatiotemporal
Window (STW) are included in the testing. To ensure variable
independence, other modules remain unchanged across all ex-
periments. The accuracy is evaluated across 16 scenes from

the DVSNOISE20 dataset, with the average performance re-
ported.

Table 3. Ablation test of our algorithm
Attention Tests Removed
AUC 0.813

Depth Tests D = 1 D = 2 D = 4
AUC 0.688 0.792 0.870

Degree Tests Kd = 8 Kd = 16 Kd = 48
AUC 0.783 0.845 0.869

PCP Tests Kp = 1 Kp = 3 Kp = 4
AUC 0.844 0.854 0.812

H/W Tests H/W = 2 H/W = 6 H/W = 8
AUC 0.681 0.859 0.821

T Tests T = 0.01 T = 0.03 T = 0.04
AUC 0.847 0.858 0.815

Original AUC = 0.867

From the ablation experiments, we observe that the at-
tention mechanism effectively aggregates useful information,
thereby enhancing denoising accuracy. Increasing the depth
and degree of the Relation Tree significantly improves de-
noising performance; however, this improvement becomes
marginal when the tree depth reaches D = 4 and the de-
gree reaches Kd = 48. This suggests that D = 3 and
Kd = 32 are sufficient for capturing spatiotemporal corre-
lations in event streams. Further increasing D to 4 or Kd to
48 results in higher computational costs during the inference
phase, reducing inference speed without providing substantial
performance gains.

Regarding the hyperparameter Kp for PCP pruning, when
Kp increases from 1 to 2 (the original parameter setting), the
algorithm’s performance improves. However, when Kp con-
tinues to increase, the algorithm’s performance declines. This
is because the algorithm excessively focuses on information
from the same pixel while neglecting information from other
pixels. Repeated extraction of similar information from the
same pixel reduces the algorithm’s performance.

For the selection of the spatiotemporal window, the algo-
rithm achieves optimal performance when the hyperparam-
eters are set as H/W = 4 and T = 0.02. A too small
spatiotemporal window leads to insufficient receptive field,
which is unfavorable for information extraction, while a too
large receptive field extracts information from events that are
too distant, both of which hinder the algorithm’s information



Fig. 6. Illustration of iteration inference process. In the iterative inference process, the sub-node selection is performed first,
followed by sequential convolution. For clarity, we set Kp = 1, which indicates that only one register group is depicted for
each pixel in the figure.

processing.

3. VISUALIZATION

To visually demonstrate the denoising effects, we visualize
selected scenes from the DVSNOISE20 dataset. In this pro-
cess, the event data over a specific time period is converted
into frames for display. Positive polarity events are repre-
sented in red, while negative polarity events are shown in
blue. The results are presented in Figure 7. From the fig-
ure, it can be seen that our method effectively removes noise
while preserving useful event information compared to other
methods.

4. SUPPLEMENTARY ACURRACY COMPARISON
ON DVSCLEAN

This experiment is carried out based on the simulated data
of the DVSCLEAN[1] dataset. By randomly injecting events
into the simulated dataset to simulate actual noise, the model
is used to remove these noises, thereby comparing the denois-
ing capabilities of the model under different noise intensities.
Specifically, in this experiment, noises with 30%, 50% and
100% of the number of original scene events were introduced
into the original DVSCLEAN simulated dataset, and the pro-
posed algorithm was compared with other classic algorithms.
The experimental results are shown in Table 4, and the com-
parison index is the Signal-to-Noise Ratio (SNR). The larger
the SNR value, the better the denoising effect. In the scenario

of 30% noise injection, this algorithm performed well and ob-
tained the second-best result; while in the scenarios of 50%
and 100% noise injection, it achieved the best performance.
In addition, for different degrees of noise, the performance of
the algorithm did not show a significant decline, indicating
that it has strong adaptability to different noise levels.

Table 4. Accuracy comparison on DVSCLEAN
Methods BAF MLPF EdnCNN TGNN AEDNet Ours

30% noise 27.9 29.3 27.8 27.7 28.6 29.2
50% noise 23.0 22.7 24.6 25.0 25.8 26.4
100% noise 18.9 17.2 18.6 23.2 24.4 25.2
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Fig. 7. Visualization of event denoising frames. This figure uses the stairs scene from the DVSNOISE20 dataset to illustrate
the denoising effects.


