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Supplementary Material

In our work, we proposed Perceptually Guided Coreset
Selection (PGCS) for Image Quality Assessment (IQA). This
supplementary document provides a detailed elaboration on
the experimental findings presented in the main paper, offer-
ing additional insights into the datasets, baseline coreset se-
lection methods, experimental settings, and hyperparameters.

1. EXTENDED RESULTS

In this section, we first illustrate the performance evaluation
of our proposed PGCS method alongside other baseline meth-
ods on MUSIQ [1], followed by an ablation study for the
PGCS image encoder E component.

1.1. Performance on IQA architecture - MUSIQ

This section discusses results on IQA architecture, MUSIQ
[1]. Table 1 presents a performance comparison of coreset
selection methods for the MUSIQ, trained on dataset frac-
tions (1%, 5%, and the full dataset) and evaluated on their
respective test sets. The coreset selection methods compared
include Herding [2], K-center [3], Contextual Diversity (CD)
[4], Moderate Coreset [5], and our proposed PGCS. Results
are reported using two metrics: Spearman’s Rank Correlation
Coefficient (SRCC) and Pearson’s Linear Correlation Coeffi-
cient (PLCC) for three datasets: KonIQ-10k [6], SPAQ [7],
and AGIQA-3k [8]. A weighted average of SRCC and PLCC
is also provided, calculated using the number of images in the
test sets as weights. At 1% and 5% dataset fractions, PGCS
performs better in terms of SRCC and PLCC metrics.

1.2. Ablation Study: PGCS Image Encoder

IQA relies on an image’s semantic content and distortion to
predict the quality score of an image. To validate the effec-
tiveness of the image encoder used in PGCS, we conducted
experiments to evaluate the suitability of the LIQE image en-
coder [10] for our approach. We experimented with extract-
ing features from pre-trained networks, ResNet-50 [11] and
VGG-19 [12] before their fully connected layers. Addition-
ally, we performed an experiment using the logits from LIQE
as the image representation. The results, presented in Table 2,
validate our choice of including the LIQE image encoder, as

it consistently outperforms the other configurations in terms
of performance.

1.3. Ablation Study: Projection and Latent Space Parti-
tioning

Table 3 presents the ablation study results evaluating the im-
pact of non-linear projections and latent space partitioning
on the proposed PGCS method. It reports the test set per-
formance of the MANIQA architecture trained using a 5%
dataset fraction as the coreset. The results highlight how dif-
ferent projection techniques and partitioning strategies influ-
ence model performance, demonstrating the effectiveness of
our approach. Non-linear projections are particularly bene-
ficial as they better capture complex distortions and feature
relationships in IQA datasets compared to linear ones, lead-
ing to more informative coreset selection.

2. DATASET DESCRIPTION

We validated the performance of our proposed coreset se-
lection method, PGCS, across five benchmark IQA datasets,
each with distinct characteristics.

• KADID-10k [13]: This dataset consists of 10,125 im-
ages with 25 different types of synthetic distortions ap-
plied to 81 pristine images. These distortions include
artifacts such as noise, blur, and compression, making
it a comprehensive resource for evaluating IQA coreset
selection methods on artificially altered content.

• TID2013 [14]: Comprising 3,000 images with 24 ref-
erence images and 25 distortion types at 5 levels each,
this dataset focuses on synthetic distortions, including
additive noise, color quantization, and more complex
transformations, providing a rich set of variations for
IQA coreset selection methods evaluation.

• KonIQ-10k [6]: This dataset includes 10,073 images
with authentic distortions collected from real-world
sources. Captured under diverse conditions, it reflects
realistic scenarios with distortions arising from natural
photography errors, such as focus issues and lighting
variations.



Table 1: Performance comparison of coreset selection methods for the MUSIQ [1], trained on dataset fractions selected by each
method and evaluated on the respective test sets. Bold values mark the top-2 best performing methods for each dataset. The
weighted average is calculated using the number of images in the test set as weights.

Dataset
Fraction Methods KonIQ-10k SPAQ AGIQA-3K Weighted Average

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

1%

Herding 0.4041 0.4204 0.6919 0.6866 0.0083 0.1159 0.4876 0.5053
K-center 0.4204 0.4064 0.5011 0.5110 0.0422 0.1533 0.4108 0.4232

CD 0.4044 0.4111 0.6407 0.6315 0.0656 0.2257 0.4713 0.4896
Moderate 0.3661 0.3537 0.7054 0.7013 0.0496 0.1950 0.4831 0.4940

PGCS 0.4563 0.4671 0.7194 0.7062 0.0350 0.1963 0.5253 0.5436

5%

Herding 0.4430 0.4351 0.6967 0.6860 0.0203 0.1513 0.5075 0.5155
K-center 0.4624 0.4514 0.7125 0.7007 0.0806 0.2374 0.5303 0.5397

CD 0.4655 0.4414 0.7344 0.7142 0.0631 0.1907 0.5395 0.5359
Moderate 0.5954 0.5803 0.7271 0.7189 0.0398 0.2003 0.5874 0.5971

PGCS 0.6075 0.6058 0.7703 0.7665 0.0749 0.2305 0.6167 0.6334
FULL 0.7471 0.7531 0.8262 0.8299 0.5133 0.5094 0.7546 0.7583

Table 2: Ablation study evaluating configurations for extracting image embeddings for the proposed PGCS method. The
numerical values corresponding to the test set results for MANIQA [9] architecture trained using a 5% dataset fraction as the
coreset.

Image Embedding for PGCS KADID-10K TID2013 KonIQ-10k SPAQ AGIQA-3K
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

Extracted from VGG-19 0.8068 0.8144 0.6013 0.6738 0.8374 0.8731 0.8923 0.8947 0.7784 0.8344
Extracted from ResNet-50 0.8247 0.8320 0.5858 0.6366 0.8486 0.8736 0.8902 0.8909 0.7804 0.8262

LIQE logits 0.8340 0.8472 0.6293 0.7055 0.8468 0.8722 0.8895 0.8935 0.7905 0.8478
LIQE Image Encoder 0.8372 0.8473 0.6628 0.7061 0.8603 0.8776 0.8923 0.8956 0.8079 0.8598

• SPAQ [7]: The Smartphone Photography Attribute and
Quality (SPAQ) dataset contains 11,125 images cap-
tured using various smartphone models. It emphasizes
authentic distortions associated with mobile photogra-
phy, such as noise and overexposure, making it suitable
for evaluating IQA techniques tailored to handheld de-
vices.

• AGIQA-3K [8]: This dataset features artificially gen-
erated distortions based on generative models. It in-
cludes content with unique and complex distortions
not found in traditional datasets, offering a challeng-
ing testbed for assessing IQA methods in emerging
scenarios involving synthetic imagery.

Table 4 provides details for each dataset, including Mean
Opinion Score (MOS) range and the number of images cor-
responding to dataset fractions ranging from 1% to 95% for
each dataset. This enables a direct comparison of perfor-
mance results across different fractions. These datasets col-
lectively provide a diverse evaluation benchmark, encompass-
ing synthetic, authentic, and artificially generated distortions.

3. BASELINE CORESET SELECTION METHODS

We compared the performance of our proposed PGCS with
four other coreset selection baselines, Herding [2], K-center
greedy [3], and Contextual Diversity (CD) [4] and Moderate
Coreset [5].

• Herding [2]: This method selects data points or gen-
erates pseudo-samples to approximate a target distri-
bution efficiently. By iteratively minimizing the dis-
tance between the centers of the coreset and the original
dataset in the feature space avoiding explicit model fit-
ting. It draws inspiration from maximum entropy prin-
ciples.

• k-Center Greedy [3]: This approach is designed to
solve the minimax facility location problem, which
seeks to select k samples as coreset CS from a full
dataset D such that the largest distance between any
data point in D \ CS and its closest data point in CS
is minimized. This problem is NP-hard, thus, greedy
approximation is employed. To tackle the unlabeled
coreset problem for CNNs, k-Center Greedy proposes
a rigorous bound between the average loss over any
given subset and the remaining data points using the
geometry of the data. As an active learning algorithm,
selecting a subset that minimizes this bound is objec-
tive.

• Contextual Diversity (CD) [4]: This approach was ini-
tially proposed to enhance active learning for CNNs.
Unlike traditional methods that rely on visual diver-
sity or prediction uncertainty, CD captures variations in
spatial context by accounting for the confusion arising
from spatially co-occurring classes.

• Moderate Coreset [5]: Traditional coreset selection



Table 3: Ablation study evaluating choice of non-linear projections and latent space partitioning for proposed PGCS method.
The numerical values corresponding to the test set results for MANIQA [9] architecture trained using a 5% dataset fraction as
the coreset.

Non Linear Projection + Partitioning Method KADID-10K TID2013 KonIQ-10k SPAQ AGIQA-3K
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

PCA + K-Means Clustering 0.7877 0.7954 0.5818 0.6369 0.8012 0.8506 0.8668 0.8671 0.7527 0.8198
t-SNE + K-Means Clustering 0.8132 0.8134 0.6031 0.6403 0.8152 0.8599 0.8734 0.8764 0.7775 0.8233

PCA + Latent Space Partioning ( Algorithm 2) 0.8012 0.8044 0.6150 0.6498 0.8222 0.8418 0.8759 0.8854 0.7805 0.8354
t-SNE + Latent Space Partioning ( Algorithm 2) 0.8372 0.8473 0.6628 0.7061 0.8603 0.8776 0.8923 0.8956 0.8079 0.8598

Table 4: Details of the IQA datasets used in the experiments, including the number of images corresponding to each dataset
fraction.

Dataset
Distortion
Category MOS Range #images Coreset Size = #images corresponding to dataset fraction Full

1.0% 5.0% 10.0% 30.0% 50.0% 70.0% 90.0% 95.0%
KADID-10K Synthetic [1,5] 10125 70 354 708 2125 3543 4960 6377 6731 7086

TID2013 Synthetic [0,9] 3000 20 104 209 629 1049 1469 1889 1994 2099
KonIQ-10k Authentic [1,5] 10073 70 352 705 2115 3525 4935 6345 6698 7051

SPAQ Authentic [0,100] 11125 77 389 778 2336 3893 5450 7008 7397 7787
AGIQA-3K AI Generated [0,5] 2982 20 104 208 625 1043 1460 1877 1981 2086

methods rely on predefined score criteria to choose data
points within a specific score range, which may not
adapt well when the scenario changes, as the optimal
range varies. Moderate coreset overcomes this by us-
ing the score median as a generalizable criterion. How-
ever, this approach applies the median score range as
a global selection criterion for all classes, without ac-
counting for the local distribution of each class, which
may vary due to differences in class density.

4. EXPERIMENTAL SETTINGS

In this section, we describe the implementation details of
the baselines and our proposed PGCS. The baselines include
Herding [2], K-center greedy [3], and Contextual Diversity
(CD) [4] and Moderate Coreset [5]. We also present the
hyperparameter settings used for the IQA architecture to
evaluate the performance of the baseline coreset selection
methods and PGCS.

4.1. Implementation Details

PGCS is based on distortion, quality, and semantics-aware
image embeddings extracted from LIQE. Thus, to ensure
a fair comparison, we also employed embeddings from the
LIQE image encoder incorporated with the following base-
lines: Herding [2], K-center greedy [3], and Contextual
Diversity (CD) [4] and Moderate Coreset [5]. The other im-
plementation details of all baselines and our proposed PGCS
are provided below.

• Herding [2] and k-Center Greedy [3]: We employ
the implementation given in publicly available GitHub

repository DeepCore1 with embeddings from LIQE im-
age encoder as feature matrix, instead of VGG [12] or
ResNet-50 [11].

• Contextual Diversity (CD) [4]: We utilize the imple-
mentation available in the publicly accessible GitHub
repository2. To adapt CD for IQA, quality scores (or
MOS) are discretized into bins, and logits representing
quality levels from the LIQE [10] are employed to con-
struct a co-occurrence matrix.

• Moderate Coreset [5]: We use the implementation
given in publicly available GitHub repository3. Mod-
erate coreset requires class labels; for IQA, we dis-
cretized quality scores (or MOS) into bins, with each
bin representing a distinct class.

• PGCS: Our proposed approach involves several key
components to optimize coreset selection. We first use
a pre-trained image encoder E of LIQE [10] to extract
image embeddings of dimension-512 for each image of
the dataset D. These embeddings are then projected to a
lower-dimensional space using the projection operator
Pm, where t-SNE [15] is selected as Pm with m = 3.
Next, we partition the projected embeddings using la-
tent space partitioning algorithm with the number of
partitions as K = 10. A dataset fraction α defines the
percentage of the dataset to be selected as a coreset. For
each partition, we calculate the median distance from
the partition center to all the instances belonging to that
partition. We choose α% of instances from each par-
tition to ensure diversity in the selected images. The

1https://github.com/PatrickZH/DeepCore
2https://github.com/sharat29ag/CDAL
3https://github.com/tmllab/2023 ICLR Moderate-DS

https://github.com/PatrickZH/DeepCore
https://github.com/sharat29ag/CDAL
https://github.com/tmllab/2023_ICLR_Moderate-DS.git


dataset fraction α can range from 1% to 95%, allowing
flexibility in the proportion of the dataset selected.

4.2. Hyperparameters Settings - IQA Architecture

We evaluated the performance of PGCS against other baseline
methods by using the selected coreset to train the IQA archi-
tecture MANIQA [9] and MUSIQ [1]. This evaluation was
conducted across dataset fractions α ranging from 1% to 95%
for all datasets. We conducted experiments using PyTorch
2.4.0 and CUDA 12.2 for training and testing on an NVIDIA
A100 GPU.

• MANIQA: MANIQA was trained and evaluated on
coresets selected from all five datasets mentioned in
Section 2. We utilize the MANIQA implementation
publicly available on GitHub4, and kept default config-
urations in our experiments. The training images are
resized to a size of 224 × 224 and random horizontal
flipping applied with a probability of 0.7. We kept the
patch size P set to 8. The MANIQA framework con-
sists of two stages, each comprising two Transposed
Attention Blocks (TAB) and one Scale Swin Trans-
former Block (SSTB). The embedding dimensions of
the first and second SSTBs were set to D1 = 768 and
D2 = 384, respectively. The Multi-Layer Perceptron
(MLP) hidden layer dimension Dm, number of heads
H , and window size were set to 768, 4, and 4 for each
SSTB. The scaling factor α in the SSTB set to 0.80.
The training was performed with a batch size B of 2
and an initial learning rate lr of 1 × 10−5, using the
ADAM optimizer with a weight decay of 1 × 10−5.
A cosine annealing learning rate scheduler was ap-
plied, with Tmax = 50 and ηmin = 0. The model was
trained for 25 epochs. The Mean Squared Error (MSE)
loss function was used as the training objective. The
test set is kept consistent across all dataset fractions
to ensure a concrete comparison between the baseline
coreset methods and our proposed PGCS. During in-
ference, we calculated metrics Spearman Rank Order
Correlation (SRCC) and Pearson Linear Correlation
Coefficient (PLCC) for test set to report the results.

• MUSIQ: We used the MUSIQ implementation publicly
available on GitHub5, and kept default configurations
in our experiments. MUSIQ employs a Transformer-
based architecture with a feed-forward hidden layer di-
mension of 384 and a multi-head attention mechanism
consisting of 6 heads, each operating on a channel di-
mension of 384. The final MLP has a hidden layer
size of 1152. Dropout is applied at a rate of 0.1 to
both the attention and feed-forward layers, with an ad-
ditional embedding dropout also set to 0.1. The model

4https://github.com/IIGROUP/MANIQA
5https://github.com/anse3832/MUSIQ

Table 5: Learning rate lr and #epochs for training on
MUSIQ.

Dataset → KonIQ-10k SPAQ AGIQA-3K
Hyperparameter ↓

lr 1× 10−4 1× 10−4 1× 10−5

#epochs 30 10 10

incorporates layer normalization with an epsilon value
of 1 × 10−12 to ensure numerical stability. The grid
size of 10 is used for the spatial embedding. A co-
sine annealing learning rate scheduler was applied, with
Tmax = 3 × 104 and ηmin = 0. The training was
done with a batch size B of 2 using the SGD optimizer.
The learning rate lr and #epochs are tailored for each
dataset, with specific values provided in Table 5.

5. CORESET VISUALIZATION

In the main paper, we plotted t-SNE [15] embeddings for each
dataset and coreset method for 5% dataset fraction. In this
supplementary document, Figures 1 to 3 present the results
for dataset fractions of 1%, 10%, and 30% to further demon-
strate the performance of PGCS in selecting a representative
and diverse coreset across a range of dataset sizes. The se-
lected coreset points are marked in red to clearly indicate the
chosen data points for each method. The saturated red re-
gions indicate areas with a higher density of selected points.
PGCS exhibits the widest distribution of coreset points with
minimal overlap, as illustrated in the t-SNE plots. This dis-
tinct spread and reduced overlap highlight PGCS’s capabil-
ity to effectively select diverse and representative data points,
minimizing redundancy and ensuring that the coreset used for
training the IQA architecture effectively captures the key vari-
ations in the dataset.
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(a) KADID-10k [13]

(b) TID2013 [14]

(c) KonIQ-10K [6]

(d) SPAQ [7]

(e) AGIQA-3K [8]

Fig. 1: t-SNE embeddings for each dataset and coreset method. Coreset (Dataset Fraction = 1% ) highlighted in red to illustrate
selected data points. The saturated red regions indicate areas with a higher density of points, highlighting the concentration of
selected points in the same location. The colorbar (on the right) shows the MOS score range for the dataset.
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(c) KonIQ-10K [6]

(d) SPAQ [7]

(e) AGIQA-3K [8]

Fig. 2: t-SNE embeddings for each dataset and coreset method. Coreset (Dataset Fraction = 10% ) highlighted in red to illustrate
selected data points. The saturated red regions indicate areas with a higher density of points, highlighting the concentration of
selected points in the same location. The colorbar (on the right) shows the MOS score range for the dataset.
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Fig. 3: t-SNE embeddings for each dataset and coreset method. Coreset (Dataset Fraction = 30% ) highlighted in red to illustrate
selected data points. The saturated red regions indicate areas with a higher density of points, highlighting the concentration of
selected points in the same location. The colorbar (on the right) shows the MOS score range for the dataset.
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