# INVESTIGATING ROBUSTNESS OF UNSUPERVISED STYLEGAN IMAGE RESTORATION (Supplementary Material)

# I. IMPLEMENTATION DETAILS

We used three-phase latent optimization; in phase 1, a single latent vector  $\mathbf{w} \in \mathbb{R}^{512}$  shared across all layers, This phase ensures strong prior alignment with the distribution of realistic images. then phase 2, expand per-layer latent matrix  $\mathbf{w}^+ \in \mathbb{R}^{N_L \times 512}$ , Each layer receives its own distinct 512-dimensional latent vector, allowing more flexibility in reconstruction while preserving the global structure initialized in Phase I. Finally, in phase 3, we use a filter-wise latent tensor  $\mathbf{w}^{++} \in \mathbb{R}^{N_F \times N_L \times 512}$ , This phase assigns a separate latent code to each filter at each layer, providing fine-grained control over the generator's behavior and enabling highly detailed restorations.

We performed restoration at five degradation levels: XL (Extra Low), L (Low), M (Medium), S (Severe), and XS (Extra Severe). These levels combine various degradation parameters tailored to the restoration task. We used similar parameters as those proposed in RUSIR [1].

#### **II. EXPERIMENTAL RESULTS**

The data presented in Tables I and Table II summarize the experimental results of image restoration methods applied to the Drone dataset across various types of degradation. The evaluation of these results is based on three key performance metrics: LPIPS, LPIPS-vgg, and PFID, which are assessed at different levels of image degradation. The goal is to compare the performance of our proposed method (referred to as "Ours") with the existing RUSIR method on these metrics. Lower values for these metrics indicate better performance, signifying results that are closer to the original image.

The tables presented in Table III and Table IV report the quantitative performance results of image restoration methods applied to the FFHQ dataset, assessing different degradation types across multiple metrics: LPIPS, LPIPS-vgg, and PFID. These results compare the proposed method (Ours) with the existing RUSIR method, with lower values of these metrics indicating better restoration quality.

#### III. METHOD

We explore StyleGAN-based unsupervised image restoration by integrating various IQA-based loss functions into the StyleGAN image restoration pipeline, exploring their effects on the final restored image quality.

After generating synthetic images using StyleGAN2-ADA, we evaluate their quality through several metrics: Inception Score (IS) [2], Frechet Inception Distance (FID) [3], and Kernel Inception Distance (KID) [4]. These metrics provide a quantitative assessment of the generated images, measuring their realism and alignment with the distribution of real images. The Inception Score evaluates the clarity and diversity of the generated images, while FID and KID assess the similarity between the synthetic and real image distributions, with FID focusing on the distance between feature distributions and KID measuring discrepancies in feature distributions using kernel.

| Degradation Type | LPIPS ↓   |       | LPIPS-vgg ↓ |       | <b>PFID</b> ↓ |       |
|------------------|-----------|-------|-------------|-------|---------------|-------|
|                  | RUSIR [1] | Ours  | RUSIR [1]   | Ours  | RUSIR [1]     | Ours  |
| Upsampling       |           |       |             |       |               |       |
| XS               | 0.747     | 0.649 | 0.745       | 0.709 | 115.7         | 67.3  |
| S                | 0.814     | 0.737 | 0.755       | 0.719 | 122.2         | 58.3  |
| М                | 0.818     | 0.729 | 0.760       | 0.722 | 123.4         | 95.5  |
| L                | 0.828     | 0.756 | 0.769       | 0.735 | 152.6         | 133.2 |
| XL               | 0.855     | 0.807 | 0.784       | 0.757 | 182.6         | 173.1 |
| Denoising        |           |       |             |       |               |       |
| XS               | 0.759     | 0.647 | 0.746       | 0.708 | 122.5         | 61.2  |
| S                | 0.769     | 0.653 | 0.747       | 0.709 | 124.6         | 59.1  |
| М                | 0.788     | 0.666 | 0.748       | 0.706 | 122.0         | 66.6  |
| L                | 0.800     | 0.683 | 0.749       | 0.707 | 132.1         | 81.0  |
| XL               | 0.806     | 0.704 | 0.750       | 0.720 | 136.0         | 117.2 |
| Deartifacting    |           |       |             |       |               |       |
| XS               | 0.758     | 0.626 | 0.738       | 0.681 | 140.5         | 74.2  |
| S                | 0.765     | 0.630 | 0.740       | 0.687 | 145.1         | 74.8  |
| М                | 0.768     | 0.639 | 0.746       | 0.690 | 145.8         | 80.9  |
| L                | 0.778     | 0.660 | 0.750       | 0.699 | 142.7         | 93.0  |
| XL               | 0.818     | 0.688 | 0.766       | 0.714 | 158.4         | 121.1 |
| Inpainting       |           |       |             |       |               |       |
| XS               | 0.745     | 0.649 | 0.725       | 0.676 | 128.5         | 81.5  |
| S                | 0.735     | 0.648 | 0.723       | 0.677 | 153.3         | 86.1  |
| М                | 0.740     | 0.650 | 0.728       | 0.683 | 159.9         | 89.6  |
| L                | 0.738     | 0.656 | 0.730       | 0.690 | 170.8         | 99.0  |
| XL               | 0.747     | 0.658 | 0.736       | 0.697 | 164.9         | 112.9 |

TABLE I: Experimental results on the Drone dataset, for single degradation. The lowest values in each column indicate the best results.

# A. Latent Space Extension and Optimization

Image restoration begins with StyleGAN inversion, where we seek a latent code  $w \in W$  such that the generated image  $x_{clean} = G(w)$  closely matches the degraded target image  $y = f(y_{clean})$ . To improve fidelity, the latent space is extended to W+ and further to W++, providing more degrees of freedom to better align the generated image with the target.

# B. IQA-Based and LPIPS Loss Functions

We aim to improve image restoration quality by incorporating multiple Image Quality Assessment (IQA)-based loss functions to guide the StyleGAN inversion to capture diverse perceptual and structural aspects of image quality, leading to a more robust and nuanced restoration process.

**LPIPS Loss**: The LPIPS score measures perceptual similarity between the activations of two image patches for extracted features from a pre-trained network. We use the LPIPS score to define a loss function as follows.

Traditional loss functions like MSE and L1 distance, which compare images at the pixel level, often fail to capture the perceptual differences between images. LPIPS is more tolerant of small spatial

| Degradation Type | LPIPS ↓            |        | LPIPS-vgg ↓ |        | <b>PFID</b> ↓ |       |
|------------------|--------------------|--------|-------------|--------|---------------|-------|
|                  | RUSIR [1]          | Ours   | RUSIR [1]   | Ours   | RUSIR [1]     | Ours  |
| 2 Degradation    |                    |        |             |        |               |       |
| NA               | 0.795              | 0.687  | 0.751       | 0.714  | 117.3         | 71.3  |
| AP               | 0.732              | 0.655  | 0.738       | 0.697  | 164.6         | 108.9 |
| UA               | 0.890              | 0.840  | 0.793       | 0.785  | 198.2         | 175.7 |
| NP               | 0.779              | 0.684  | 0.747       | 0.714  | 155.7         | 98.6  |
| UN               | 0.843              | 0.811  | 0.778       | 0.751  | 167.1         | 157.3 |
| Degradation Type | LPIPS ↓            |        | LPIPS-vgg ↓ |        | <b>PFID</b> ↓ |       |
|                  | RUSIR [1           | ] Ours | RUSIR [1]   | l Ours | RUSIR [1]     | Ours  |
| 3 degradation    |                    |        |             |        |               |       |
| UNP              | 0.816              | 0.789  | 0.768       | 0.749  | 159.5         | 155.9 |
| UPA              | 0.833              | 0.838  | 0.786       | 0.784  | 150.4         | 186.1 |
| UNA              | 0.888              | 0.885  | 0.808       | 0.787  | 215.5         | 185.6 |
| NAP              | 0.790              | 0.702  | 0.750       | 0.718  | 140.6         | 101.1 |
| Degradation Type | LPIPS $\downarrow$ |        | LPIPS-vgg ↓ |        | <b>PFID</b> ↓ |       |
|                  | RUSIR [1           | ] Ours | RUSIR [1]   | Ours   | RUSIR [1]     | Ours  |
| 4 degradation    |                    |        |             |        |               |       |
| UNAP             | 0.840              | 0.859  | 0.796       | 0.782  | 174.2         | 231.3 |

TABLE II: Quantitative results for multiple degradation in the Drone dataset.

misalignments between images, as it focuses on overall perceptual similarity at feature space rather than exact pixel matches.

$$\ell_{\text{LPIPS}}(x,y) = \sum_{i} w_i \cdot \|\phi_i(x) - \phi_i(y)\|_2^2$$
(1)

Here, x is the restored image and y is the reference image,  $\phi_i(x)$  and  $\phi_i(y)$  denote the feature maps of the two images at layer i of a pre-trained neural network, capturing the perceptual details at different levels. The term  $w_i$  represents learned weights that scale the contribution of each feature layer.

#### IV. DUST AND SCRATCHES

Our experiments tested the suggested approach on a range of degraded image categories. The approach performed well on the FFHQ data, especially for face images, where fine details were successfully restored and facial features preserved. It also achieved good results on aerial imagery, including drone-acquired images, where overall features and textures were successfully recovered. Nonetheless, when tested with highly degraded analogue photographs, the approach revealed its limitations, particularly those suffering from dust and scratches [5]. The extensive variability and pathological patterns caused by this kind of defect were a challenge, presumably because the model was not trained explicitly with this degradation. These results demonstrate the strength of our method on highly structured and relatively clean data and point to the necessity of further improvements to deal with more involved and irregular noise patterns present in ancient analogue media. The result is shown in the Figure 1

# V. ABLATION

While our approach builds on the RUSIR framework, the primary innovation lies in the combination of multiple loss functions to improve robustness. improve restoration performance by leveraging

| Degradation Type | LPIPS     |       | LPIPS-vgg |       | PFID      |      |
|------------------|-----------|-------|-----------|-------|-----------|------|
|                  | RUSIR [1] | Ours  | RUSIR [1] | Ours  | RUSIR [1] | Ours |
| Upsampling       |           |       |           |       |           |      |
| XS               | 0.215     | 0.146 | 0.339     | 0.284 | 48.6      | 22.7 |
| S                | 0.255     | 0.202 | 0.378     | 0.337 | 49.7      | 26.3 |
| М                | 0.313     | 0.289 | 0.414     | 0.399 | 61.6      | 47.2 |
| L                | 0.335     | 0.341 | 0.428     | 0.435 | 83.7      | 68.1 |
| XL               | 0.353     | 0.365 | 0.439     | 0.450 | 95.2      | 93.6 |
| Denoising        |           |       |           |       |           |      |
| XS               | 0.246     | 0.199 | 0.373     | 0.348 | 55.5      | 39.4 |
| S                | 0.259     | 0.209 | 0.383     | 0.355 | 59.5      | 45.8 |
| Μ                | 0.278     | 0.241 | 0.397     | 0.378 | 63.5      | 51.3 |
| L                | 0.306     | 0.278 | 0.414     | 0.400 | 70.4      | 58.1 |
| XL               | 0.338     | 0.386 | 0.430     | 0.459 | 83.5      | 79.0 |
| Deartifacting    |           |       |           |       |           |      |
| XS               | 0.264     | 0.188 | 0.380     | 0.337 | 56.3      | 33.9 |
| S                | 0.272     | 0.201 | 0.385     | 0.350 | 60.8      | 33.9 |
| Μ                | 0.282     | 0.212 | 0.394     | 0.361 | 65.2      | 39.5 |
| L                | 0.297     | 0.242 | 0.406     | 0.387 | 68.1      | 46.4 |
| XL               | 0.343     | 0.304 | 0.438     | 0.432 | 81.5      | 60.1 |
| Inpainting       |           |       |           |       |           |      |
| XS               | 0.203     | 0.128 | 0.300     | 0.231 | 51.9      | 24.3 |
| S                | 0.212     | 0.152 | 0.314     | 0.262 | 63.1      | 36.9 |
| М                | 0.225     | 0.173 | 0.329     | 0.286 | 68.9      | 42.0 |
| L                | 0.241     | 0.193 | 0.343     | 0.307 | 71.6      | 46.9 |
| XL               | 0.256     | 0.213 | 0.357     | 0.325 | 77.0      | 59.3 |

TABLE III: Quantitative Results for samples of FFHQ-dataset, for single degradation.

complementary features such as perceptual similarity (LPIPS), structural integrity (MS-SSIM), Gradient, and consistency (see Table V). This systematic integration of loss functions in StyleGAN-specific context offers new insights into the application of multi-loss functions in generative models, which, to the best of our knowledge, has not been explored in such detail in unsupervised image restoration tasks(see Fig. 2).

# VI. CONCLUSION

We have shown that integrating composite loss functions in the StyleGAN inversion significantly enhances performance to improve the robustness of unsupervised image restoration. We have shown through experiments that the proposed approach achieves high-fidelity and realistic image restoration while adapting to the specific nature of the degradation. In the future, we propose improving the restoration quality in the presence of multiple degradations in the input.

# REFERENCES

<sup>[1]</sup> Y. Poirier-Ginter and J.-F. Lalonde, "Robust unsupervised stylegan image restoration," in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2023, pp. 22292–22301.

<sup>[2]</sup> S. Barratt and R. Sharma, "A note on the inception score," arXiv preprint arXiv:1801.01973, 2018.

| Degradation Type | LPIPS     |       | LPIPS-vgg |       | PFID      |       |
|------------------|-----------|-------|-----------|-------|-----------|-------|
|                  | RUSIR [1] | Ours  | RUSIR [1] | Ours  | RUSIR [1] | Ours  |
| 2 degradation    |           |       |           |       |           |       |
| NA               | 0.301     | 0.296 | 0.417     | 0.422 | 70.358    | 57.3  |
| AP               | 0.302     | 0.252 | 0.408     | 0.386 | 83.021    | 55.9  |
| UA               | 0.375     | 0.431 | 0.455     | 0.492 | 102.8     | 96.0  |
| NP               | 0.309     | 0.277 | 0.412     | 0.395 | 84.865    | 63.9  |
| UN               | 0.377     | 0.460 | 0.455     | 0.513 | 107.0     | 120.4 |
| Degradation Type | LPIPS     |       | LPIPS-vgg |       | PFID      |       |
|                  | RUSIR [1] | Ours  | RUSIR [1] | Ours  | RUSIR [1] | Ours  |
| 3 degradation    |           |       |           |       |           |       |
| UNP              | 0.380     | 0.459 | 0.458     | 0.502 | 107.683   | 115.2 |
| UPA              | 0.387     | 0.441 | 0.459     | 0.498 | 114.313   | 107.9 |
| UNA              | 0.404     | 0.485 | 0.475     | 0.534 | 116.477   | 122.3 |
| NAP              | 0.328     | 0.302 | 0.428     | 0.421 | 85.779    | 68.0  |
| Degradation Type | LPIPS     |       | LPIPS-vgg |       | PFID      |       |
|                  | RUSIR [1] | Ours  | RUSIR [1] | Ours  | RUSIR [1] | Ours  |
| 4 degradation    |           |       |           |       |           |       |
| UNAP             | 0.404     | 0.475 | 0.475     | 0.519 | 121.924   | 110.3 |

TABLE IV: Quantitative results for multiple degradation in the samples of FFHQ-dataset.

| SSIM Loss (L degradation)        |       |        |       |         |  |  |  |
|----------------------------------|-------|--------|-------|---------|--|--|--|
| Task                             | SSIM  | PSNR   | LPIPS | FID     |  |  |  |
| Upsampling                       | 0.765 | 23.592 | 0.357 | 104.832 |  |  |  |
| Denoising                        | 0.424 | 12.311 | 0.693 | 149.733 |  |  |  |
| Deartifacting                    | 0.799 | 21.304 | 0.419 | 133.710 |  |  |  |
| Inpainting                       | 0.801 | 21.268 | 0.441 | 137.441 |  |  |  |
| Consistency Loss (L degradation) |       |        |       |         |  |  |  |
| Task                             | SSIM  | PSNR   | LPIPS | FID     |  |  |  |
| Upsampling                       | 0.581 | 11.205 | 0.618 | 250.330 |  |  |  |
| Denoising                        | 0.010 | 5.252  | 0.917 | 600.371 |  |  |  |
| Deartifacting                    | 0.568 | 10.350 | 0.628 | 182.790 |  |  |  |
| Inpainting                       | 0.581 | 11.205 | 0.618 | 250.330 |  |  |  |
| Gradient Loss (L degradation)    |       |        |       |         |  |  |  |
| Task                             | SSIM  | PSNR   | LPIPS | FID     |  |  |  |
| Upsampling                       | 0.571 | 11.081 | 0.619 | 210.182 |  |  |  |
| Denoising                        | 0.579 | 11.997 | 0.583 | 199.621 |  |  |  |
| Deartifacting                    | 0.569 | 11.167 | 0.614 | 213.464 |  |  |  |
| Inpainting                       | 0.587 | 12.005 | 0.582 | 206.164 |  |  |  |

TABLE V: For Ablation study :Comparison of different tasks under SSIM, Consistency, and Gradient loss for L degradation

- [3] A. Obukhov and M. Krasnyanskiy, "Quality assessment method for gan based on modified metrics inception score and fréchet inception distance," in Software Engineering Perspectives in Intelligent Systems: Proceedings of 4th Computational Methods in Systems and Software 2020, Vol. 1 4. Springer, 2020, pp. 102–114.
- [4] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, "Demystifying mmd gans," arXiv preprint arXiv:1801.01401, 2018.
- [5] Z. Wan, B. Zhang, D. Chen, P. Zhang, D. Chen, J. Liao, and F. Wen, "Bringing old photos back to life," in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 2747–2757.



Fig. 1: Result of our method on analog-type artifacts, such as film scratches and dust.

# Individual loss



Fig. 2: This figure demonstrates the process for each element, where the first image shows the input, followed by the degradation of the image according to the specified binomial and Poisson distributions. Subsequently, leveraging prior information, the model attempts to reconstruct the image to its original form, showcasing the effectiveness of our method.