INVESTIGATING ROBUSTNESS OF UNSUPERVISED STYLEGAN IMAGE
RESTORATION (Supplementary Material)

I. IMPLEMENTATION DETAILS

We used three-phase latent optimization; in phase 1, a single latent vector w € R®'? shared across all
layers, This phase ensures strong prior alignment with the distribution of realistic images. then phase
2, expand per-layer latent matrix w+ € RV2*512 Each layer receives its own distinct 512-dimensional
latent vector, allowing more flexibility in reconstruction while preserving the global structure initialized
in Phase I. Finally, in phase 3, we use a filter-wise latent tensor w*+ € RVF*N>512 Thig phase assigns
a separate latent code to each filter at each layer, providing fine-grained control over the generator’s
behavior and enabling highly detailed restorations.

We performed restoration at five degradation levels: XL (Extra Low), L (Low), M (Medium), S
(Severe), and XS (Extra Severe). These levels combine various degradation parameters tailored to the
restoration task. We used similar parameters as those proposed in RUSIR [1].

II. EXPERIMENTAL RESULTS

The data presented in Tables [[ and Table [[I] summarize the experimental results of image restoration
methods applied to the Drone dataset across various types of degradation. The evaluation of these results
is based on three key performance metrics: LPIPS, LPIPS-vgg, and PFID, which are assessed at different
levels of image degradation. The goal is to compare the performance of our proposed method (referred
to as ”Ours”) with the existing RUSIR method on these metrics. Lower values for these metrics indicate
better performance, signifying results that are closer to the original image.

The tables presented in Table and Table report the quantitative performance results of image
restoration methods applied to the FFHQ dataset, assessing different degradation types across multiple
metrics: LPIPS, LPIPS-vgg, and PFID. These results compare the proposed method (Ours) with the
existing RUSIR method, with lower values of these metrics indicating better restoration quality.

III. METHOD

We explore StyleGAN-based unsupervised image restoration by integrating various IQA-based loss
functions into the StyleGAN image restoration pipeline, exploring their effects on the final restored
image quality.

After generating synthetic images using StyleGAN2-ADA, we evaluate their quality through several
metrics: Inception Score (IS) [2], Frechet Inception Distance (FID) [3]], and Kernel Inception Distance
(KID) [4]]. These metrics provide a quantitative assessment of the generated images, measuring their
realism and alignment with the distribution of real images. The Inception Score evaluates the clarity
and diversity of the generated images, while FID and KID assess the similarity between the synthetic
and real image distributions, with FID focusing on the distance between feature distributions and KID
measuring discrepancies in feature distributions using kernel.



Degradation Type LPIPS | LPIPS-vgg | PFID |
RUSIR [I]  Ours RUSIR [I]  Ours RUSIR [I]  Ours
Upsampling
XS 0.747 0.649 0.745 0.709 115.7 67.3
S 0.814 0.737 0.755 0.719 122.2 58.3
M 0.818 0.729 0.760 0.722 123.4 95.5
L 0.828 0.756 0.769 0.735 152.6 133.2
XL 0.855 0.807 0.784 0.757 182.6 173.1
Denoising
XS 0.759 0.647 0.746 0.708 122.5 61.2
S 0.769 0.653 0.747 0.709 124.6 59.1
M 0.788 0.666 0.748 0.706 122.0 66.6
L 0.800 0.683 0.749 0.707 132.1 81.0
XL 0.806 0.704 0.750 0.720 136.0 117.2
Deartifacting
XS 0.758 0.626 0.738 0.681 140.5 74.2
S 0.765 0.630 0.740 0.687 145.1 74.8
M 0.768 0.639 0.746 0.690 145.8 80.9
L 0.778 0.660 0.750 0.699 142.7 93.0
XL 0.818 0.688 0.766 0.714 158.4 121.1
Inpainting
XS 0.745 0.649 0.725 0.676 128.5 81.5
S 0.735 0.648 0.723 0.677 153.3 86.1
M 0.740 0.650 0.728 0.683 159.9 89.6
L 0.738 0.656 0.730 0.690 170.8 99.0
XL 0.747 0.658 0.736 0.697 164.9 112.9

TABLE I: Experimental results on the Drone dataset, for single degradation. The lowest values in each
column indicate the best results.

A. Latent Space Extension and Optimization

Image restoration begins with StyleGAN inversion, where we seek a latent code w € W such that the
generated image Zeq, = G(w) closely matches the degraded target image y = f(Yciean ). To improve
fidelity, the latent space is extended to W+ and further to W + 4, providing more degrees of freedom
to better align the generated image with the target.

B. IQA-Based and LPIPS Loss Functions

We aim to improve image restoration quality by incorporating multiple Image Quality Assessment
(IQA)-based loss functions to guide the StyleGAN inversion to capture diverse perceptual and structural
aspects of image quality, leading to a more robust and nuanced restoration process.

LPIPS Loss: The LPIPS score measures perceptual similarity between the activations of two image
patches for extracted features from a pre-trained network. We use the LPIPS score to define a loss
function as follows.

Traditional loss functions like MSE and L1 distance, which compare images at the pixel level, often
fail to capture the perceptual differences between images. LPIPS is more tolerant of small spatial



Degradation Type LPIPS | LPIPS-vgg | PFID |
RUSIR [I]  Ours RUSIR [I]  Ours RUSIR [I]  Ours
2 Degradation
NA 0.795 0.687 0.751 0.714 117.3 71.3
AP 0.732 0.655 0.738 0.697 164.6 108.9
UA 0.890 0.840 0.793 0.785 198.2 175.7
NP 0.779 0.684 0.747 0.714 155.7 98.6
UN 0.843 0.811 0.778 0.751 167.1 157.3
Degradation Type LPIPS | LPIPS-vgg | PFID |

RUSIR [1]  Ours | RUSIR [1] Ours | RUSIR [I]  Ours

3 degradation

UNP 0.816 0.789 0.768 0.749 159.5 155.9
UPA 0.833 0.838 0.786 0.784 150.4 186.1
UNA 0.888 0.885 0.808 0.787 215.5 185.6
NAP 0.790 0.702 0.750 0.718 140.6 101.1
Degradation Type LPIPS | LPIPS-vgg | PFID |

RUSIR [1] Ours | RUSIR [I] Ours | RUSIR [I] Ours

4 degradation
UNAP 0.840 0.859 0.796 0.782 174.2 231.3

TABLE II: Quantitative results for multiple degradation in the Drone dataset.

misalignments between images, as it focuses on overall perceptual similarity at feature space rather than
exact pixel matches.

lipps(7,y) = Zwi Nei(x) — ds(y) I3 (D

Here, x is the restored image and y is the reference image, ¢;(z) and ¢;(y) denote the feature maps
of the two images at layer ¢ of a pre-trained neural network, capturing the perceptual details at different
levels. The term w; represents learned weights that scale the contribution of each feature layer.

IV. DUST AND SCRATCHES

Our experiments tested the suggested approach on a range of degraded image categories. The approach
performed well on the FFHQ data, especially for face images, where fine details were successfully
restored and facial features preserved. It also achieved good results on aerial imagery, including drone-
acquired images, where overall features and textures were successfully recovered. Nonetheless, when
tested with highly degraded analogue photographs, the approach revealed its limitations, particularly
those suffering from dust and scratches [5]]. The extensive variability and pathological patterns caused by
this kind of defect were a challenge, presumably because the model was not trained explicitly with this
degradation. These results demonstrate the strength of our method on highly structured and relatively
clean data and point to the necessity of further improvements to deal with more involved and irregular
noise patterns present in ancient analogue media. The result is shown in the Figure []]

V. ABLATION

While our approach builds on the RUSIR framework, the primary innovation lies in the combination
of multiple loss functions to improve robustness. improve restoration performance by leveraging



Degradation Type LPIPS LPIPS-vgg PFID
RUSIR [|I]  Ours RUSIR [|I]  Ours RUSIR [1]  Ours
Upsampling
XS 0.215 0.146 0.339 0.284 48.6 22.7
S 0.255 0.202 0.378 0.337 49.7 26.3
M 0.313 0.289 0.414 0.399 61.6 47.2
L 0.335 0.341 0.428 0.435 83.7 68.1
XL 0.353 0.365 0.439 0.450 95.2 93.6
Denoising
XS 0.246 0.199 0.373 0.348 55.5 39.4
S 0.259 0.209 0.383 0.355 59.5 45.8
M 0.278 0.241 0.397 0.378 63.5 51.3
L 0.306 0.278 0.414 0.400 70.4 58.1
XL 0.338 0.386 0.430 0.459 83.5 79.0
Deartifacting
XS 0.264 0.188 0.380 0.337 56.3 33.9
S 0.272 0.201 0.385 0.350 60.8 33.9
M 0.282 0.212 0.394 0.361 65.2 39.5
L 0.297 0.242 0.406 0.387 68.1 46.4
XL 0.343 0.304 0.438 0.432 81.5 60.1
Inpainting
XS 0.203 0.128 0.300 0.231 51.9 24.3
S 0.212 0.152 0.314 0.262 63.1 36.9
M 0.225 0.173 0.329 0.286 68.9 42.0
L 0.241 0.193 0.343 0.307 71.6 46.9
XL 0.256 0.213 0.357 0.325 77.0 59.3

TABLE III: Quantitative Results for samples of FFHQ-dataset, for single degradation.

complementary features such as perceptual similarity (LPIPS), structural integrity (MS-SSIM), Gradient,
and consistency (see Table [V). This systematic integration of loss functions in StyleGAN-specific
context offers new insights into the application of multi-loss functions in generative models, which,
to the best of our knowledge, has not been explored in such detail in unsupervised image restoration
tasks(see Fig. [2)).

VI. CONCLUSION

We have shown that integrating composite loss functions in the StyleGAN inversion significantly
enhances performance to improve the robustness of unsupervised image restoration. We have shown
through experiments that the proposed approach achieves high-fidelity and realistic image restoration
while adapting to the specific nature of the degradation. In the future, we propose improving the
restoration quality in the presence of multiple degradations in the input.
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Fig. 1: Result of our method on analog-type artifacts, such as film scratches and dust.
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Fig. 2: This figure demonstrates the process for each element, where the first image shows the input,
followed by the degradation of the image according to the specified binomial and Poisson distributions.
Subsequently, leveraging prior information, the model attempts to reconstruct the image to its original
form, showcasing the effectiveness of our method.
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