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In the following, we first show the architecture of our 4-
scale model. Then we elaborate on our employed context en-
coder and finally, we demonstrate more visual results on the
KITTI [1] and the Spring [2] benchmark.

1. ARCHITECTURE OF MS-RAFT-3D+

Figure 1 shows the architecture of our 4-scale MS-RAFT-3D+
model. It can be seen that in addition to the three scales at
[ 1
16 , 1

8 , 1
4 ], the SE(3) field is also refined at 1

2 resolution. This
allows to capture more details from images. Besides, no bilin-
ear upsampling is needed to upsample the SE(3) field to full
resolution, as the results after convex upsampling are already
at full resolution. Note that for computing the matching costs,
we used the on-demand cost computation from [3].
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Fig. 1. Architecture of MS-RAFT-3D+.

2. CONTEXT ENCODER

We use a simple top-down feature extractor to compute con-
text features. The architecture is shown in Figure 2. The num-

bers in brackets show the number of channels that is output
by each module. Note that the number of context encoder
channels in the ablations of the main paper correspond to the
residual blocks, before applying the 1 × 1 conv. Essentially,
the update unit (which is responsible for computing the resid-
ual flow) is shared among scales. This means, inputs of that
module at each scale must have the same number of chan-
nels. We realize this by employing 1 × 1 convs, which are
activation-free (see [4]). Please note that Figure 2 shows the
context encoder for the 4-scale model. In the case of our 3-
scale model, the output of the first residual block at 1

2 resolu-
tion is not passed through a 1 × 1 conv and is not output by
the encoder.
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Fig. 2. Structure of the context encoder for four scales.

3. QUALITATIVE RESULTS

We present more qualitative results of our method from the
Spring benchmark in Figure 3 and from the KITTI benchmark
in Figure 4. In both cases, our approach achieves detailed re-
sults and lower errors. Importantly, in the case of KITTI, as
the top 80 pixels of samples are not considered in the evalu-
ation, they are also not computed but extended from the last
row’s estimate, as in RAFT-3D [5].
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Fig. 3. Qualitative results of our method and the current SOTA on Spring.

target disparity D2 error optical flow Fl error SF error
CamLiRAFT [7] D2-fg: 1.37, D2-bg: 0.42, D2-all: 0.66 Fl-fg: 6.85, Fl-bg: 0.42, Fl-all: 2.06 SF-fg: 6.92, SF-bg: 0.80, SF-all: 2.36

MS-RAFT-3D+ D2-fg: 1.28, D2-bg: 0.38, D2-all: 0.61 Fl-fg: 2.52, Fl-bg: 0.43, Fl-all: 0.96 SF-fg: 2.92, SF-bg: 0.73, SF-all: 1.29

CamLiRAFT [7] D2-fg: 2.13, D2-bg: 2.37, D2-all: 2.31 Fl-fg: 5.07, Fl-bg: 0.97, Fl-all: 1.91 SF-fg: 5.15, SF-bg: 2.48, SF-all: 3.09

MS-RAFT-3D+ D2-fg: 2.60, D2-bg: 1.86, D2-all: 2.03 Fl-fg: 3.09, Fl-bg: 0.77, Fl-all: 1.30 SF-fg: 3.13, SF-bg: 1.97, SF-all: 2.23

Fig. 4. Qualitative results of our method and the current SOTA on KITTI.
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