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A. DIFFERENTIABILITY OF CONVENTIONAL
HISTOGRAM MATCHING

We explain why it is difficult to modify conventional his-
togram matching (HM) to be differentiable. This challenge
is due to conventional HM containing two non-differentiable
processes. We first explain the processes of conventional
HM. We then explain the two non-differentiable processes in
conventional HM: (1) cumulative distribution function (CDF)
calculation and (2) look up table (LUT) calculation.

A.1. Processes of Conventional Histogram Matching

Conventional HM [1] transforms the CDF of a source image
to match the CDF of a target image. Conventional HM first
computes the CDFs of both the source image xg and the tar-
get image xr, for each color channel. We denote the CDF
of xg as Fx, and the CDF of xr as Fx,. Then, conven-
tional HM creates a mapping function M (p) of pixel value
p to match Fi to Fy,. Theoretically, the mapping function
M (p) is expressed as Fi ' (Fx.(p)). However, in general,
finding analytical expressions for F,:Tl is not a trivial task [1].
To address this, in practice, conventional HM uses an approx-
imation method. The mapping function M (p) is expressed
as an LUT. Finally, the pixels of the source image xg with
value p are replaced with M (p) to obtain x,; whose CDF
is approximately equal to Fy,. Conventional HM involves
two non-differentiable processes: (1) CDF calculation and (2)
LUT calculation. We explain these processes in the following.

A.2. Non-Differentiable CDF Calculation

Iy, and Fy are obtained as the cumulative sums of the his-
tograms of xp and xg. Letx = {z; | i =1,2,--- ,H x W}
denote the input N-bit digital image flattened to 1D, where
H and W represent the height and width of the input image.
Letp € P = {0,1,---,2V — 1} denote the pixel value of
the input image. The histogram of the input image hy(p) is
calculated using the bin assignment function §(z;, p):
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Fig. 5. The LUT calculation by finding the pixel value ¢*
such that Fy,.(g*) is the nearest value to Fi (p).

where, the bin assignment function 6 (x;, p) is defined as:
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0 otherwise.

For each pixel value p € P, the CDF Fy is defined as:
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The derivative of the bin assignment function §(z;, p) w.r.t.
x; is zero for all ¢. This feature makes the CDF calcu-
lation in HM non-differentiable. PyTorch [2], a widely
used framework in deep learning research, provides his-
togram calculation functions such as torch.histc (),
torch.histogram(),and torch.bincount (). How-
ever, these functions lack implementation of a backward func-
tion for floating-point inputs'. To address this zero gradient
problem, some researchers [3, 4, 5, 6] make the histogram
calculation differentiable by replacing the bin assignment
function with another differentiable function.

A.3. Non-Differentiable LUT Calculation

Conventional HM calculates an LUT M (p) using the CDF of
the target image Fy, and the CDF of the source image Fy.
Then the conventional HM applies the LUT to the source im-
age. Fig. 5 shows the process of LUT calculation. The LUT

!'This behavior was confirmed using PyTorch 2.5.0+cul24.



Table 3. Top-1 accuracy (%) under different size of trainable prameters s. s = 50176 corresponds to the input size of ResNet18.

Category s | day | night fog rain  sand snow | adverse mean
Baseline - 17980 | 4998 1429 19.80 17.51 29.32 35.12
256 | 75.32 | 5290 28.99 2930 51.71 37.60 40.10
512 | 75.12 | 5497 3237 3339 53.13 40.34 42.84
Proposed 1024 | 75.96 | 56.23 39.48 39.03 61.77 39.11 47.12
2048 | 77.56 | 57.35 4424 4722 68.55 4527 52.53
4096 | 77.68 | 58.75 39.06 37.40 60.43 37.47 46.62
50176 | 80.32 | 60.91 34.16 31.51 5045 29.73 41.35

Algorithm 1 Practical LUT calculation process in HM
Require: Fy, Fyx,,P=0Q={0,1,---,2V — 1}
Ensure: LUT M

1: for eachp € P do

2: dmin <~ 00

3: ¢+ 0

4: for each ¢ € Q do

5: d < |Fxr (q) = Fxs(p)]
6: if d < d iy, then
7: dmin —d

8: g+ q

9: end if

10: end for

11: M(p) < q*

12: end for

13: return M

of pixel value M (p) is calculated by finding the pixel value ¢*
such that Fy,.(g*) is the nearest value to Fy (p). Specifically,
q* is obtained as:

q¢" = argmin |Fx, (¢) — Fxs(D)|- )

qeEQ

where Q = {0,1,---,2% — 1} is the set of possible pixel
values (domain of the Fy,). For each pixel value p € P,
LUT M (p) is defined as:

M(p)=q" )

The optimal ¢* is given by Fi_ ! (Fx,(p)). However, in gen-
eral, finding analytical expressions for FX_T1 is not a trivial
task [1]. In practice, to obtain ¢* for each p € P, conven-
tional HM calculate |Fy,.(q) — Fx, (p)| for each ¢ € Q and
find the ¢ that minimizes |Fx, (¢) — Fx¢(p)|. Algorithm 1
shows this practical LUT calculation process. In this practi-
cal LUT calculation, the derivative of M (p) w.r.t. Fy, (k) is
zero for all k € P. This is because M (p) is not a function of
Fy,.(k), for all k. This feature makes the LUT calculation in
HM non-differentiable.

B. ABLATION STUDY ON SIZE OF TRAINABLE
PARAMETERS

We present an ablation study on the size of trainable parame-
ters s, which was not included in the main paper due to page
limitations. We set the minimum value of s to 28, correspond-
ing to the bit depth of the images used in our experiments, and
the maximum value to 50176 (224 x 224), corresponding to
the input size of ResNet18. The intermediate values were se-
lected as 29, 219, 211 and 212,

Table 3 shows the comparison results of top-1 accuracy
under different s values. A result of the baseline trained on
the daytime subset of the CODaN dataset without any prepro-
cessing are reprinted for comparison. Under adverse weather
conditions, all examined parameter settings achieved higher
top-1 accuracy than the baseline.

C. REFERENCES

[1] Rafael C. Gonzalez, “Intensity transformations and spa-
tial filtering,” in Digital Image Processing, chapter 3, pp.
119-153. Pearson Deutschland, 4th edition, 2022.

[2] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer, “Auto-
matic differentiation in pytorch,” in Adv. Neural Inform.
Process. Syst. Worksh., 2017.

[3] Evgeniya Ustinova and Victor Lempitsky, ‘“Learning
deep embeddings with histogram loss,” in Adv. Neural In-
form. Process. Syst., D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, Eds., 2016, vol. 29.

[4] Zhe Wang, Hongsheng Li, Wanli Ouyang, and Xiaogang
Wang, “Learnable histogram: Statistical context features
for deep neural networks,” in Eur. Conf. Comput. Vis.,
Cham, 2016, pp. 246-262.

[5] Ibrahim Yusuf, George Igwegbe, and Oluwafemi Azeez,
“Differentiable histogram with hard-binning,”
preprint arXiv:2012.06311, 2020.

arXiv

[6] Mor Avi-Aharon, Assaf Arbelle, and Tammy Riklin
Raviv,  “Differentiable histogram loss functions for



intensity-based image-to-image translation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 45, no. 10, pp. 11642—
11653, 2023.



