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A. DIFFERENTIABILITY OF CONVENTIONAL
HISTOGRAM MATCHING

We explain why it is difficult to modify conventional his-
togram matching (HM) to be differentiable. This challenge
is due to conventional HM containing two non-differentiable
processes. We first explain the processes of conventional
HM. We then explain the two non-differentiable processes in
conventional HM: (1) cumulative distribution function (CDF)
calculation and (2) look up table (LUT) calculation.

A.1. Processes of Conventional Histogram Matching

Conventional HM [1] transforms the CDF of a source image
to match the CDF of a target image. Conventional HM first
computes the CDFs of both the source image xS and the tar-
get image xT , for each color channel. We denote the CDF
of xS as FxS

and the CDF of xT as FxT
. Then, conven-

tional HM creates a mapping function M(p) of pixel value
p to match FxS

to FxT
. Theoretically, the mapping function

M(p) is expressed as F−1
xT

(FxS
(p)). However, in general,

finding analytical expressions for F−1
xT

is not a trivial task [1].
To address this, in practice, conventional HM uses an approx-
imation method. The mapping function M(p) is expressed
as an LUT. Finally, the pixels of the source image xS with
value p are replaced with M(p) to obtain xM whose CDF
is approximately equal to FxT

. Conventional HM involves
two non-differentiable processes: (1) CDF calculation and (2)
LUT calculation. We explain these processes in the following.

A.2. Non-Differentiable CDF Calculation

FxT
and FxS

are obtained as the cumulative sums of the his-
tograms of xT and xS . Let x = {xi | i = 1, 2, · · · , H ×W}
denote the input N -bit digital image flattened to 1D, where
H and W represent the height and width of the input image.
Let p ∈ P = {0, 1, · · · , 2N − 1} denote the pixel value of
the input image. The histogram of the input image hx(p) is
calculated using the bin assignment function δ(xi, p):

hx(p) =

H×W∑
i=1

δ(xi, p), (1)
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Fig. 5. The LUT calculation by finding the pixel value q∗

such that FxT
(q∗) is the nearest value to FxS

(p).

where, the bin assignment function δ(xi, p) is defined as:

δ(xi, p) =

{
1 if xi = p,

0 otherwise.
(2)

For each pixel value p ∈ P , the CDF Fx is defined as:

Fx(p) =
1

HW

p∑
k=0

hx(k), (3)

The derivative of the bin assignment function δ(xi, p) w.r.t.
xi is zero for all i. This feature makes the CDF calcu-
lation in HM non-differentiable. PyTorch [2], a widely
used framework in deep learning research, provides his-
togram calculation functions such as torch.histc(),
torch.histogram(), and torch.bincount(). How-
ever, these functions lack implementation of a backward func-
tion for floating-point inputs1. To address this zero gradient
problem, some researchers [3, 4, 5, 6] make the histogram
calculation differentiable by replacing the bin assignment
function with another differentiable function.

A.3. Non-Differentiable LUT Calculation

Conventional HM calculates an LUT M(p) using the CDF of
the target image FxT

and the CDF of the source image FxS
.

Then the conventional HM applies the LUT to the source im-
age. Fig. 5 shows the process of LUT calculation. The LUT

1This behavior was confirmed using PyTorch 2.5.0+cu124.



Table 3. Top-1 accuracy (%) under different size of trainable prameters s. s = 50176 corresponds to the input size of ResNet18.
Category s day night fog rain sand snow adverse mean
Baseline - 79.80 49.98 14.29 19.80 17.51 29.32 35.12

Proposed

256 75.32 52.90 28.99 29.30 51.71 37.60 40.10
512 75.12 54.97 32.37 33.39 53.13 40.34 42.84

1024 75.96 56.23 39.48 39.03 61.77 39.11 47.12
2048 77.56 57.35 44.24 47.22 68.55 45.27 52.53
4096 77.68 58.75 39.06 37.40 60.43 37.47 46.62

50176 80.32 60.91 34.16 31.51 50.45 29.73 41.35

Algorithm 1 Practical LUT calculation process in HM
Require: FxS

, FxT
, P = Q = {0, 1, · · · , 2N − 1}

Ensure: LUT M
1: for each p ∈ P do
2: dmin ←∞
3: q∗ ← 0
4: for each q ∈ Q do
5: d← |FxT

(q)− FxS
(p)|

6: if d < dmin then
7: dmin ← d
8: q∗ ← q
9: end if

10: end for
11: M(p)← q∗

12: end for
13: return M

of pixel value M(p) is calculated by finding the pixel value q∗

such that FxT
(q∗) is the nearest value to FxS

(p). Specifically,
q∗ is obtained as:

q∗ = argmin
q∈Q

|FxT
(q)− FxS

(p)|. (4)

where Q = {0, 1, · · · , 2N − 1} is the set of possible pixel
values (domain of the FxT

). For each pixel value p ∈ P ,
LUT M(p) is defined as:

M(p) = q∗ (5)

The optimal q∗ is given by F−1
xT

(FxS
(p)). However, in gen-

eral, finding analytical expressions for F−1
xT

is not a trivial
task [1]. In practice, to obtain q∗ for each p ∈ P , conven-
tional HM calculate |FxT

(q) − FxS
(p)| for each q ∈ Q and

find the q that minimizes |FxT
(q) − FxS

(p)|. Algorithm 1
shows this practical LUT calculation process. In this practi-
cal LUT calculation, the derivative of M(p) w.r.t. FxT

(k) is
zero for all k ∈ P . This is because M(p) is not a function of
FxT

(k), for all k. This feature makes the LUT calculation in
HM non-differentiable.

B. ABLATION STUDY ON SIZE OF TRAINABLE
PARAMETERS

We present an ablation study on the size of trainable parame-
ters s, which was not included in the main paper due to page
limitations. We set the minimum value of s to 28, correspond-
ing to the bit depth of the images used in our experiments, and
the maximum value to 50176 (224 × 224), corresponding to
the input size of ResNet18. The intermediate values were se-
lected as 29, 210, 211, and 212.

Table 3 shows the comparison results of top-1 accuracy
under different s values. A result of the baseline trained on
the daytime subset of the CODaN dataset without any prepro-
cessing are reprinted for comparison. Under adverse weather
conditions, all examined parameter settings achieved higher
top-1 accuracy than the baseline.
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