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This supplementary material provides additional details
and experimental results for our CURVE method. We first
explain details of our tone curve module and reinforcement
learning framework that were omitted from the main paper.
Then, we demonstrate visual comparisons for both multi-
exposure and low-light datasets..

5. SUPPLEMENTARY DETAILS

5.1. Bézier-Curve Tone Adjustment (Sec. 2.1)

Tone adjustment maps the intensity of an input image to out-
put image values, thereby changing the image contrast. Our
method uses a cubic Bézier curve to define this mapping func-
tion. For example, “A cubic Bézier curve is a parametric
curve whose shape can be modified by adjusting the positions
of its control points. For a parameter q (0 ≤ q ≤ 1), the
two-dimensional curve coordinates cP (q) = [x(q), y(q)] of a
cubic Bézier curve can be expressed using four control points
pi as follows:

cP (q) =

(1− q)3p0 +3q(1− q)2p1 + 3q2(1− q)p2 + q3p3 (11)

Since p0 and p3 represent the start and end points of the curve,
we set p0 = [0, 0] and p3 = [1, 1] to fix the tone curve’s end-
points at the origin and unit point. This yields Eqs. 1 and
2 in the main paper. Our tone adjustment module changes
the values of p1 and p2 to modify the shape of the curve,
thereby altering the mapping function. Fig. 6 shows exam-
ples of applying different mapping functions to an image. As
illustrated, the contrast changes according to the curve shape.

For implementation, our tone adjustment module approxi-
mates this Bézier curve using piecewise linear segments. Fig.
5 illustrates the curve when L = 8 (seven linear segments,
eight sample points). As shown in the lower part of Fig. 5,
each point of the piecewise linear approximation corresponds
to (cPi

(qj), cPo
(qj)) (as in Eq. 3 of the main paper).

We design the action parameters for reinforcement learn-
ing using ri and θi as illustrated in the upper part of Fig. 5
(corresponding to Eq. 4 and 5 in the main paper). The pur-
pose of this design is to make the curve shape approach an
identity mapping when these values are close to zero.
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Fig. 5. Definition of our Bézier curve tone adjustment. The
upper figure shows parameterization using ri and θi for con-
trol points p1 and p2. The lower part illustrates the relation-
ship between input and output intensity points cPi(qj) and
cPo(qj) (as defined in Eq. 3 of the main paper).

5.2. Reinforcement Learning Framework (Sec.2.2)

We adopted the Soft Actor-Critic (SAC) algorithm as our rein-
forcement learning (RL) approach, following prior research.
Since we made no significant modifications to SAC itself, we
kept the algorithm’s description brief in the main paper. This
section provides additional details of our RL framework for
clarity. In particular, we explain how the CLIP module and
the tone adjustment are integrated into the training process,
and we describe the inference (testing) framework as well.

RL aims to maximize the expected cumulative reward ob-
tained during an episode consisting of repeated actions and
state transitions. Various algorithms have been proposed for



Fig. 6. Visualization of different tone curves and their effects on a gradient image. The top row shows various tone mapping
functions. The leftmost is the identity mapping. The bottom row shows the corresponding output images when these mappings
are applied to a gradient image (leftmost bottom).

this purpose. Soft Actor-Critic (SAC) is an off-policy method
that maximizes the expected cumulative reward and policy en-
tropy (diversity of action selection). During training, SAC si-
multaneously updates two networks: the policy network πϕ

and the Q-function network Qθ (only πϕ is used during infer-
ence). The Q-function network estimates the expected sum of
future discounted rewards and policy entropy (the so-called
soft Q-value) for a given state st and action at (Fig. 1(b)
bottom in the main paper). The policy network takes a state
as input and outputs parameters (µ, σ) that define a Gaussian
distribution over actions. During training, actions are sampled
from this distribution for exploration, while during inference
(testing), the mean µ is used for deterministic action selection
(Fig. 1(b) top in the main paper).

We integrate CLIP and the tone-adjustment module into
the SAC framework shown in Fig. 7(a). Since SAC is an
off-policy method, we utilize past exploration data obtained
during training. We store tuples of [st,at, rt, st+1,at+1] and
sample batches from this experience replay buffer when up-
dating each network. CLIP is used as a fixed encoder to
evaluate perceptual quality, and no gradients are propagated
through the CLIP model.

Fig. 7(b) illustrates the flow for calculating the loss Lt

used for reward design (Sec. 2.2.2 in the main paper). From
positive/negative text T , we obtain feature vector fT using
CLIP’s text encoder, and from image X, we also obtain image
feature vector fX from the CLIP’s image encoder. The cosine
similarity m(·, ·) between the features is expressed as:

m(fT , fX) =
fT
T fX

||fT ||||fX||
. (12)

This similarity is used in a softmax-based loss (see Eq.
(6) in the main paper) that encourages the enhanced image
feature fX to be closer to the ‘good image’ text feature fTp

than to the ‘bad image’ prompt fTn
.

Finally, Fig. 8 shows the flow during inference (testing).
Our method iteratively optimizes the mapping function and
the intensity mapping. Our goal is to obtain the final high-
resolution image XT with all mapping processes applied, but
applying the mapping process to every image Xt would be
time-consuming. It can create state st+1 by applying the map-
ping function to the downsized image state st without gen-
erating intermediate high-resolution image Xt. Meanwhile,
even when we have obtained at for all t, it is theoretically hard
to derive a composite mapping function through an episode
(from t = 0 to t = T ). Therefore, we take advantage of the
discrete value and limited range of pixel values by applying
our mappings to a lookup table (LUT) that covers all possi-
ble input values. By sequentially applying actions at to this
LUT l, we create a composite LUT lT from the initial LUT
l0, which is then applied to the original image X0 to obtain
the final enhanced result (Sec. 2.2.3 in the main paper).

6. EXTENDED QUALITATIVE COMPARISONS

6.1. Multi-Exposure Image Dataset

We show the comparison results on the SICE Part 2 dataset in
Fig. 9 and Fig. 10. While our proposed method consistently
maintains equivalent brightness levels across images with dif-
ferent exposures, Zero-DCE tends to further brighten already
over-exposed images.

6.2. Low-Light Image Dataset

We show the comparison results on the LOLv2 dataset in Fig.
12 and Fig. 13. Compared to other low-light image enhance-
ment methods, our proposed approach achieves a brightness
balance closer to the ground truth.
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Fig. 7. Training framework of our CURVE method. (a) The exploration flow of SAC. The obtained state, action and reward
[st,at, rt, st+1,at+1] are stored in the replay buffer and used to update the policy network πϕ and Q network Qθ. The high-
lighted components (red and blue) are used for updating each network. (b) The CLIP-based reward calculation process.
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Fig. 8. Inference (testing) framework of our CURVE method
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Fig. 9. Enhancement results on multi-exposure images from the SICE Part 2 dataset. Left: Input multi-exposure images.
Middle: Results of Zero-DCE. Right: Results of our proposed CURVE.
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Fig. 10. Enhancement results on multi-exposure images from the SICE Part 2 dataset. Left: Input multi-exposure images.
Middle: Results of Zero-DCE. Right: Results of our proposed CURVE.
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Fig. 11. Enhancement results on multi-exposure images from the SICE Part 2 dataset. Left: Input multi-exposure images.
Middle: Results of Zero-DCE. Right: Results of our proposed CURVE.
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Fig. 12. Enhancement results of our experiments on low-light images from the LoLv2Real dataset. The top row shows the
input low-light image and ground truth (GT). Rows 2-5 show the results of six conventional zero-reference LLIE methods, an
ablation study (train-by-loss), and our proposed CURVE.
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Fig. 13. Enhancement results of our experiments on low-light images from the LoLv2Real dataset. The top row shows the
input low-light image and ground truth (GT). Rows 2-5 show the results of six conventional zero-reference LLIE methods, an
ablation study (train-by-loss), and our proposed CURVE.


