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Vehicle Detection

Supplementary Material

S1. TRAINING DETAILS & DETECTION MODELS

S1.1. Training Details

We use three model architectures in our experiments: Reti-
naNet, Faster R-CNN, and YOLOv5. We obtain RetinaNet
and Faster R-CNN from Detectron2®. We retrieve YOLOVS
from its native implementation by Ultralytics*. We train the
first two using the Detectron2 pipeline. We train YOLOv5
using its native pipeline.

S1.1.1. Real Models

The training data is derived from the LINZ dataset ZV'N%, by
removing all non-“Small Vehicle” class labels from the train-
ing set, resulting in 119 691 training images. We train the real
RetinaNet and Faster R-CNN for 10 000 iterations and batch
size 640. We train the real YOLOVS for 50 epochs and batch
size 640, which corresponds to approximately 10000 itera-
tions.

S1.1.2. Synthetic Models

To train the synthetic models, we produce a training synthetic
dataset using PT3D consisting of 30000 images. We train
RetinaNet and Faster R-CNN for 10 000 iterations using batch
size 128, while YOLOVS is trained for 42 epochs using batch
size 128 (approximately 9800 iterations).

S1.2. Detection Models

Table S1 shows the average precision scores by the real and
synthetic models on the synthetic and real test sets. These
results supplement Section 7.2 in the paper.

Table S1: Evaluation results of the six models on the real and
synthetic test sets.

Architecture | Training| Detection | AP (real) | AP (synt.) AP
Data | Threshold (Blender)
RetinaNet N 49.82% | 93.50% | 94.80% | 91.22%
Faster R-CNN | JUNZ | 72139 80.34% | 93.31% | 81.71%
YOLOV5 JUNZ | 5985% | 96.21% | 95.51% | 95.55%
RetinaNet PT3D | 47.64% | 49.09% | 99.88% | 79.35%
Faster R-CNN | PT3D | 86.95% | 59.21% | 99.49% | 85.50%
YOLOV5 PT3D | 60.40% | 63.54% | 99.95% | 97.99%

3https://github.com/facebookresearch/detectron?
“https://github.com/ultralytics/yolovs

S2. PYTORCH3D DATA REALITY GAP
MITIGATION

Mitigating the distribution gap between the real and PT3D
datasets is essential for various reasons. The primary reason
is the generalization of our results. We cannot claim that our
results can generalize to one domain if we operate on a com-
pletely different domain. Hence, we attempt to minimize the
distribution gap. We try to achieve this goal by optimizing
specific parameters in the rendering pipeline, as described be-
low.

S2.1. Gaussian Blur

We apply blurring to the vehicles in the images to simulate
the blurring in the real images. Given a background image
Iy and the corresponding foreground image (i.e. , containing
vehicles) Ir;, we apply Gaussian blur:

Iblur = Ibg + G<Ifg - Ibg)a (1)

where G(-) is a Gaussian blur operator with kernel size de-
fined by k = 6 - [o] — 1, where [-] is the ceiling operator,
and o is the blur level. We find that o = 2.4 is the optimal
blurring value as shown in Figure S5. Our analysis of the blur
level shows that deficient levels of blur (i.e. , close to coarse
PT3D renderings) result in less robust synthetic models when
evaluated on the real data. Similarly, very high levels of blur
(i.e. , almost vanished vehicles) also result in poor perfor-
mance. As expected, the optimal value is somewhere in the
middle. See the effect of applying blurring in Figure S9.

S2.2. Anti-aliasing

We use anti-aliasing techniques to remove pixelization from
PyTorch3D’s coarse renderings. We apply them by rendering
images four times larger than the intended size, then com-
pressing them with the average pooling operator with kernel
size 4 and stride 4. See the effect of anti-aliasing in Figure S9.

S3. DATASETS INFORMATION

This section provides technical details for the datasets we
have sampled/annotated (real) or generated (synthetic) for our
experiments.

S3.1. Real Datasets

We produced two real overhead-view datasets for our project.
The images were sampled from two online sources: Land In-


https://github.com/facebookresearch/detectron2
https://github.com/ultralytics/yolov5

formation New Zealand® (LINZ) and Google Maps (GMaps).
Since both provide georeferenced imagery, the two image sets
were sampled from the exact location in New Zealand - Sel-

wyn®,

S§3.1.1. LINZ Dataset

Examples of the labeled LINZ and the background LINZ
datasets are shown in Figure S10 and Figure S11, respec-
tively. The distribution between negative (i.e. , empty) and
positive (i.e. , non-empty) images in the LINZ dataset is as
follows: 158 944 for negative images and 13 651 for positive
images. See the distribution of vehicle categories in this set
of images in Figure S6.

S3.1.2. Google Maps (GMaps) Dataset

We retrieved 173 264 images in total for the GMaps dataset,
which approximately matches the number of sampled LINZ
images. See examples of the GMaps dataset images in Fig-
ure S12.

S3.2. Synthetic Datasets

For our experiments, we rendered various synthetic datasets
with original and adversarial objects using two rendering
techniques: PyTorch3D and Blender. Here, we provide addi-
tional technical details and examples from each.

S$3.2.1. PyTorch3D Datasets

Original. This dataset includes original (unmodified) car
meshes. See examples of the PyTorch3D original images in
Figure S13.

Adversarial and Random Textures. As described in the
paper, we produce twelve adversarial texture maps and four
random texture maps. See these texture maps in Figure S14.
We generate 5000 validation images for each texture map that
we use for evaluation. To generate an image, we first render
the meshes using PT3D and then insert a background image
sampled from the GMaps dataset. For each scene, we uni-
formly sample from one to five vehicles. We uniformly ran-
domize the vehicle position and rotation in the scene. The
camera always points to the origin of the coordinates as de-
fined in PT3D. To sample the camera pose, we first uniformly
sample a 2D-coordinate on a square, which we then re-project
on a hemisphere, ensuring that the maximum elevation angle
deviation from the vertical position is 20°. View examples of
these images in Figure S16.

Shttps://data.linz.govt.nz/
Shttps://data.linz.govt.nz/layer/
51926-selwyn-0125m-urban—-aerial-photos-2012-2013/

§3.2.2. Blender Datasets

Original. We render 14 459 images in Blender, where 998
contain vehicles and 13 461 images are empty. There are 2096
vehicles in total in the Blender data. See examples of the
original Blender images in Figure S17.

Adversarial and Random Textures. We use the same
adversarial and random texture maps as described for the
PT3D adversarial data. We also use the same scenes as for
the original Blender data, i.e. , 14459 images, out of which
998 images contain 2096 vehicles in total. See example
images in Figure S18.

S4. 3D MESH-BASED ADVERSARIAL ATTACKS

In this section, we describe the technical aspects detailing
the methodology employed for executing adversarial attacks
within each specific setting.

S4.1. Ensemble Attacks

See Table S2 for an overview of some significant hyper-
parameters related to each adversarial attack reported in the

paper.

Table S2: An overview of the hyper-parameters used in the
ensemble attacks. The loss coefficients A1, Ay and A3 corre-
spond to the loss coefficients applied to the loss objectives of
RetinaNet, Faster R-CNN and YOLOVS respectively, as de-
scribed in Equation 1 in the main paper.

Attack Type Loss coefficient A # of epochs
A A2 A3
A-U 0.020 10.000 10.000 3
A-Ma 0.020 10.000 10.000 3
A-Pix 0.020 10.000 10.000 3
A-PixMa 0.020 10.000 10.000 3
A-Lc 0.020 10.000 10.000 2
A-Fc 0.002 10.000 2.500 2
A-LcMa 0.007 10.000 5.000 2
A-FcMa 0.002 10.000 2.000 2
A-PixLc 0.020 10.000 10.000 2
A-PixFc 0.002 10.000 2.500 2
A-PixLcMa 0.020 10.000 5.000 2
A-PixFcMa 0.003 10.000 2.000 2
Shape Attack 0.020 15.000 32.000 2
A-Fc (seq.) 0.020 10.000 30.000 2
A-PixFc (seq.) 0.013 18.740 20.444 2
A-Fc (par.) 0.020 10.000 30.000 2
A-PixFc (par.) 0.011 13.180 20.860 2

S4.2. Texture Optimization

As outlined in Section 5.2, we employ three constraints that
lead to the twelve adversarial texture settings discussed in the
main paper. These constraints are Spatial Resolution, Spatial
Restriction and Color Restriction. In this section, we discuss
the implementation of each constraint. Before delving into


https://data.linz.govt.nz/
https://data.linz.govt.nz/layer/51926-selwyn-0125m-urban-aerial-photos-2012-2013/
https://data.linz.govt.nz/layer/51926-selwyn-0125m-urban-aerial-photos-2012-2013/

the details of each constraint, we first describe how the adver-
sarial texture is defined in the unconstrained attack (T-U). To
execute this attack, a tensor of dimensions 512 x 512 x 3 is
initialized, representing the adversarial texture map. During
this initialization process, each element in the tensor is uni-
formly sampled from O to 1. During the unconstrained attack,
this tensor is the optimized entity.

S4.2.1. Spatial Resolution

To implement the spatial resolution constraint, we store the
adversarial texture as a tensor of a smaller size. In our case,
because we apply pixelization of size 16 px x 16 px, we store a
latent representation of the adversarial texture as a 32 X 32 x 3
tensor, where the first two dimensions are derived from the
fact that the final texture map is expected to be 512 x 512 x 3,
hence 512/16 = 32. Upon texture generation request, we
upscale this tensor to 512 x 512 x 3 using the nearest-neighbor
interpolation, resulting in a pixelated output.

8§4.2.2. Spatial Restriction

To implement the spatial restriction constraint, we use an ad-
versarial texture map T,qy of size 512 x 512 x 3, an original
texture map Ty, of a vehicle to which the adversarial texture
is applied, and its corresponding binary segmentation mask
Thmask- Using these three entities, we produce the segmented
adversarial texture map

Tsegmented = Tor . (1 - Tmask) + Tadv . T;nask- (2)

See the “Ma” texture maps in Figure S15 to understand the
final result. When combining this constraint with the Spatial
Resolution constraint, we first produce a pixelated adversarial
texture map and then apply masking.

8§4.2.3. Color Restriction

Consider the following example to understand how the color
constraint is implemented differently. Let p; be the ¢-th pixel
of a texture map, such that p; € P, where P € Rt We)x3 jg
the set of all pixels in the texture map of size (H; x Wy x 3).
In addition, let C' = {¢;,Vi = 1,2,...,N}, ¢; € R3 be the
limited set of colors that we want to enforce for painting the
texture map, where N is the number of allowed colors.
Ideally, we would like to be able to perform arg min in a
differentiable manner to reassign each pixel value at each at-

tack iteration, such that p; < arg min(||p; — ¢;||2). However,
c,eC

it is unclear how to do this diffefently. Therefore, we modify
the pipeline to perform it in a differentiable fashion. First of
all, we change the definition of each pixel in the texture map:
instead of representing RGB values, each pixel now repre-
sents a set of probabilities of belonging to a particular color
¢; from the set of colors C, i.e. , p; € RY, Zk pik = 1,
P e RHWOXN gnd p; = (Pi,1,Pi2 -, Pi,N), Where p; g

is the probability that the i-th pixel in the texture map is cj.
Second, we define a softmax-like function, which we use to
amplify the maximum value in a vector and suppress the non-
maximum values. We control the amplification and suppres-
sion levels with a temperature parameter 7. Applying this

softmax-like function to some vector r = [ry,72,...]T, we
. In(ry)/7 S
obtain s(r;) = W For simplicity, let s(p;) repre-
J
sent [s(pi1),-..,8(pi,n)]T. Whenever prompted to generate

a texture map with the Color Restriction constraint, we per-
form the following procedure on each pixel p; to obtain its
output RGB form p; € R?:

w; = 5(s(pi)), 3)
pi = C - wy, 4

where C = [cicp ... cy] € R¥*N. In other words, we
first shift the probabilities towards the maximum probabil-
ity class as shown in Eq. (3), then, treating probabilities as
weights, we perform a weighted sum of colors C' as shown
in Eq. (4). As we empirically find, performing soft-argmax
(Egs. (3) and (4)) twice results in a much better approximation
to argmax than if it was performed only once. We tried reduc-
ing the temperature parameter 7 and performing soft-argmax
only once, but lower temperatures resulted in numerical insta-
bility. After each attack cycle, softmax is applied to each p;
to ensure » . Di.k = 1. After finishing an adversarial attack
with this constraint, a non-differentiable arg max assigns col-
ors from C to each pixel, ensuring a final texture map with at
most IV colors. During the attack, either { P} or {P, C'} can
be optimized, contingent upon the applied restrictions (“Fc”
or “Lc” respectively).

S4.3. Shape Optimization

As outlined in Section 5.3 in the main paper, we optimize
the displacement map, transforming the pixel values into ver-
tex deformations. We employ two constraints Symmetry and
Magnitude.

We initialize a negative displacement tensor of shape 64 x
64 x 1 representing a single channel (grayscale) image. This
ensures that the number of pixels in the displacement map
(4096) is always greater than the number of vertices of the
car meshes we use (1000). Contrary to the texture map ini-
tialization, we initialize this tensor with zeros, aiming to start
from the un-deformed state.

Additionally, a topology map is calculated from the static
UV map of each mesh. The topology map gathers and re-
tains the information of each unique vertex from the UV map.
This helps align the displacement maps, UV maps, and tex-
ture maps.

The deformation at each vertex of the mesh is calculated
by using the equation

AVi=R; - D;, ®)



Axes of symmetry

Fig. S1: An example of the axes of symmetry in a displace-
ment map. The highlighted axes correspond to the central
plane that cuts the mesh in two halves along its longitudinal
direction.

where R; is the vector defined by joining the geometric mean
of all the vertices of the vehicle mesh and the corresponding
vertex coordinate V;. To calculate D;, the displacement tensor
is circularly padded to match the dimensions of the UV map.
Then, each point sampled from the topology map is used to
interpolate the aligned displacement map bi-linearly to calcu-
late the corresponding deformation D;. The two constraints
are imposed as follows.

S4.3.1. Symmetry

To ensure the symmetrical layout of the mesh, we apply a
symmetry mask while deforming the mesh. This symmetry
mask is calculated from the UV map with two axes of sym-
metry. The axes of symmetry for the corresponding displace-
ment map are shown in Figure S1.

S$4.3.2. Magnitude

The maximum amount of perturbation is crucial to determine
the practicality. We determine the width of the car mesh by
finding the maximum difference of vertex positions along the
width. The sigmoid function o(z) = 1/ (1 + e~ 7) is used on
the displacement tensor to make sure its values lie between
0 and 1. The final deformations are calculated by extending
Equation (5).

where PM is the perturbation magnitude as defined in Section
5.3 in the main paper and W is the width of the car. The
displacement maps corresponding to optimal perturbations,
when greater than 0, as described in Table 2 in the main paper
are shown in Figure S19.

SS5. ADDITIONAL RESULTS

In this section, we report some further results to complement
the arguments from the main paper.

S5.1. EASR

To evaluate the effectiveness of the adversarial meshes, we
rendered two matched image datasets, D, and D,qy, from
each experiment. For D,,, we composed and rendered 3D
scenes with the original car meshes. For D,q,, we apply
adversarial modifications to the meshes of the same scenes.
Thus, each image from D,; has an identical version (the same
background, lighting, camera parameters, and car locations
and orientations) with adversarial cars. We compute the per-
centage of vehicles detected in D, but missed in D,gy. Vam
represents such vehicles, and V; 4 denotes vehicles detected
in both Dy and D,q,. This computation yields the Arrack
Success Rate ASR = % where | - | is the cardinal-
ity operator. In our task, avoiding introducing new detections
Vin,a after applying the adversarial entity is also important.
Thus, we modify ASR to account for this:

|Vd,m| - “/m,d|

EASR =
Via,a U Viml

= ASR — ER, 7)

where EASR is the Effective Attack success Rate and ER is
the erroneous rate, i.e. fraction of true-positive detections
that emerged after introducing the adversarial entity.

S5.2. APD

In addition to computing the EASR, we evaluate the average
precision drop (APD) when running adversarial attacks. To
calculate APD, we first compute the AP on a dataset of orig-
inal images D, and on a dataset of adversarial images (D,qy
(where both are as defined in Section 7.1 in the main paper),
resulting in AP, and AP,q4, respectively. We then obtain the
average precision drop as APD = AP, — AP,. See the
results in Table S3.

As anticipated and previously noted, the findings indicate
that introducing constraints diminishes performance while in-
corporating shape modifications alongside texture alterations
restores performance. We also highlight the notably low
APD observed in randomly generated texture maps, implying
that replicating adversarial modifications randomly may yield
poor results.

S5.3. Original Blender Data Evaluation

We also report the evaluation results of all models using the
original Blender data. See example images in Section S3.2.2,
and the evaluation results in Table S1. The evaluation re-
sults suggest that almost all models perform quite well on
the Blender original data. It could be the consequence of the



Table S3: The figures show mean values from evaluations
of individual synthetic models on PT3D and Blender data.
“T”, “R”, “S” and “C” represent the texture, random texture,
shape, and combined attacks. Note that Lc and Fc are mutu-
ally exclusive by definition. The constraints follow the def-
initions outlined in Section 5.2. PM* and Pr* represent the
optimal perturbation magnitude and practicality of the attacks
involving shape modifications.

Constraints PM*| Pr* PT3D Blender
Attack e O TR [Ma APD APD

T-U — | — 50.97% 63.17%
T-Ma V| — | — 32.68% 40.67%
T-Pix v — | — 53.28% 59.03%
T-PixMa v V| — | — 24.20% 37.47%
T-Lc v — | — 46.17% 64.95%
T-Fc v — | — 7.54% 48.46%
T-LcMa v V| — | — 26.83% 46.80%
T-FcMa ViV ]| —|— 2.56% 23.11%
T-PixLc v |V — | — 56.30% 62.13%
T-PixFc v v — | — 9.62% 48.92%
T-PixLcMa v |V V| — | — 22.97% 37.59%
T-PixFcMa v ViIiv]|—|— 2.53% 38.32%
R-U — | — 0.21% 13.69%
R-Pix v — | — 0.51% 16.77%
R-Fc v — | — 0.85% 15.82%
R-PixFc v v — | — 0.62% 17.75%
S-O0 — | —|—1]—1041]0.6 53.18% 72.47%
C-U 0.0 | 1.0 55.43% —
C-Pix v 0.0 | 1.0 58.09% —
C-Lc v 0.0 | 1.0 50.49% —
C-Fc (seq.) v 0.21]0.8 18.35% 62.96%
C-Fc (par.) v 0.21]0.8 37.39% 62.57%
C-PixLc V|V 0.0 | 1.0 58.13% —
C-PixFc (seq.) | v v 0.21]0.8 36.09% 68.64%
C-PixFc (par.) | v/ v 0.21]0.8 37.79% 71.18%

Blender dataset being a high quality simulation of real world
data, i.e. it is between the coarse PT3D data and the fine-
grained LINZ data. Consequently, both the real and synthetic
models exhibit strong performance, attributed to the close re-
semblance between the Blender dataset and the training sets
of both sets of models.

S5.4. Evaluating Real Data Models on the Adversarial
Data

We also evaluate the real models (i.e. , trained on real data) on
all adversarial datasets rendered using Blender. We run these
experiments to assess how robust models trained on real data
would react to adversarial samples that are highly realistic.
However, we recognize the distribution gap between the real
data and the synthetically produced data with Blender. See
the results of the evaluations in Figures S2 and S3.

S6. PRACTICALITY AND COMPARISONS

This section extends the arguments discussed in Section 6 in
the main paper. See the extended version of Table 1 from

the main paper below in Table S4. Because the optimal Pr
level found for C-U, C-Pix, C-Lc, and C-PixLc is 1.0, i.e.
PM = 0.0, hence these combined attacks are not considered
in Table S4, because they correspond to their texture-based
counterparts T-U, T-Pix, T-Lc, and T-PixLc, respectively.

Table S4: Comparing the practicality of the attacks explored
in our study to previous works. We do not distinguish be-
tween sequential and parallel combined attacks as they only
impact the process, not the final result’s form. The first sym-
bol reflects the texture-related practicality score, the second
symbol reflects the shape-related practicality score. This ta-
ble complements Table 1 from the main paper. Compared to
the table in the main paper, the “Notes” column is missing
because we discuss the score of each camouflage in detail in
the text, instead of leaving brief notes in the table.

Camouflage PC DI DO Total
Score
., |[Puetal. (ON) [22] + + + +3
%6 Du et al. (OFF) [22] 0 + — 0
2 |EVD4UAV [71] + + + +3
E FCA [75] — — + -1
& | ACTIVE [73] — — —+ —1
DTA [72] — — —+ -1
T-U — - - -3
T-Ma — — + -1
T-Pix — + — -1
T-PixMa — + + +1
T-Lc — — — -3
T-Fc — — -3
. | T-LcMa + -1
O: T-FcMa — - + —1
T-PixLc 0 + — 0
T-PixFc + + — +1
T-PixLcMa 0 + + +2
T-PixFcMa + + + +3
S-0 0 0 0 -3
C-Fc — — — —6
C-PixFc + + - —2

The constraints that we implement affect the practicality
of the final adversarial meshes, expressed through the produc-
tion cost (PC), the difficulty of installation (DI), and difficulty
of operation (DO). Production cost refers to the estimated
cost of producing the physical camouflage, including mate-
rial, printing expenses, and labor time. Difficulty of installa-
tion refers to how easy or difficult it is to physically apply or
set up the camouflage on a vehicle. Difficulty of operation as-
sesses the extent to which the camouflage affects the normal
operation or mobility of the vehicle. See detailed discussions
below.

S6.1. Texture-Based Attacks

We first consider the texture modifications and their effect on
the practicality.

The Spatial Resolution constraint (abbreviated as “Pix”)
provides a practical approach to camouflage implementation
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Fig. S2: Evaluation results of the models trained on real data and tested on the Blender-generated adversarial datasets.
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Fig. S3: Evaluation results of the models trained on real data and tested on the Blender-generated adversarial datasets.

Dentations: *texture-only attacks, fshape-only attacks, and *fcombined attacks.



by utilizing stickers or painting squares rather than applying
the entire camouflage in one go (for example, by using vinyl
wraps, as discussed below). This method enhances the DI
score, resulting in improved outcomes. Consequently, cam-
ouflages adhering to the “Pix” constraint receive a positive
texture DI score (+X), whereas those that do not adhere to it
receive a negative score (—X). Here, X is a placeholder for
the shape-related score.

Secondly, the Spatial Restriction constraint (referred to
as “Ma”) takes into consideration the potential challenges of
operating a vehicle covered entirely by camouflage, which
can restrict the vehicle’s mobility. Our findings indicate that
full-coverage camouflages are more effective (refer to Ta-
ble 2 in the main paper; attacks involving “Ma” consistently
yield lower EASR compared to their non-“Ma” counterparts).
However, such camouflages are only suitable for stationary
vehicles, limiting operational flexibility. Introducing this
constraint allows for maintaining mobility. Therefore, cam-
ouflages adhering to this constraint receive a positive texture
DO score (+X), while those not adhering to it receive a
negative score (—X).

The Color Restriction (denoted as “Lc” or “Fc”) con-
straint minimizes the color palette for generating adversarial
texture maps, impacting camouflage production costs (PC).
Without any color restriction, we assume a negative texture
PC score (—X), as full-color printing, typical for such cases,
incurs high costs (e.g., starting from $2000 for vinyl wraps).’
Simply reducing colors does not cut costs, as vinyl wraps re-
main necessary. However, combining color restriction with
spatial resolution (e.g., “PixFc”) lowers costs by using stick-
ers or manually coloring squares using a small predefined set
of colors. Such combinations positively affect both PC and DI
scores (+X). For the limited color constraint (“Lc”), where
colors are automatically identified, we assume no impact on
PC score (0X) due to potentially hard-to-obtain colors.

S6.2. Shape-Based and Combined Attacks

The shape-based attacks do not involve any texture alter-
ations, resulting in texture-related scores of 0 across all
three criteria. Moreover, reproducing shape modifications
proves challenging, resulting in negative scores across all
three shape-related criteria. Estimating the cost and diffi-
culty of installation of such modifications remains uncertain,
dependent on the vehicle’s original shape and the extent of
planned alterations. Similarly, assessing the difficulty of op-
eration proves challenging and contingent on various factors.
The PC, DI, and DO scores for the texture components in
combined attacks mirror those of the texture-only attacks.

Thttps://www. jdpower.com/cars/shopping-guides/
how-much-does-it-cost-to-wrap-a-car

S6.3. Other Works

Du et al. introduce two types of camouflages: ON and OFF.
The ON type is applied on the rooftop of a vehicle, while the
OFF type is placed outside of the vehicle. We find that the
ON type, as well as EVD4UAV, is as practical as our most
constrained texture-based attack, but its limited coverage area
renders it impractical within the geospatial resolution context
of our study. It could be considered as a tighter version of
our implemented spatial restriction constraint (“Ma”), leading
to lower performance. The OFF type of camouflage scores
lower on DO due to mobility limitations. Additionally, the
production cost of such camouflage remains unclear, resulting
in a neutral PC texture score.

The remaining three works (FCA, ACTIVE, and DTA)
share similarities with our T-Ma camouflage. Therefore, we
assign them the same scores as the T-Ma camouflage.

S7. ANALYSIS OF ADVERSARIAL TEXTURES

Throughout our experiments, we observed a striking sim-
ilarity in the prevalence of highly saturated colors, be-
tween unconstrained adversarial texture maps and adversarial
patches generated in prior studies, such as those mentioned in
[22,4,11]. Further analysis of our results and those of other
researchers revealed that adversarial texture maps or patches
generated in setups with minimal constraints tend to saturate
colors located at the edges of the RGB color cube. They con-
sistently exhibited extreme color saturation. Figure S7 shows
the different T-U textures obtained with different attack ini-
tializations. As you can see, despite different initializations,
they are very similar.

Additionally, our analysis of the latent space indicated
that adversarial attacks could shift vehicle embeddings toward
the background distribution but were unable to achieve com-
plete blending, see Figure S8. We used PCA® and t-SNE’ on
features from a synthetic RetinaNet model. Replicating the
background underneath the car would be the most optimal so-
lution resulting in the perfect camouflage. As a result, the
features extracted from adversarial vehicles did not closely
resemble the original vehicle or the background embeddings
but instead fell somewhere in between.

As mentioned, some other works produce adversarial
patches with highly saturated colors, similar to our T-U tex-
ture map. Therefore, we analyze the color distribution to
verify that the colors appear at the edges of the RGB cube. To
do so, we plot the distribution of pixel values along the red,
green, and blue channels for each texture map.

Du et al. make their adversarial patches public'’ in good
quality, so we use them to compare. See the results of the

8https://scikit-learn.org/stable/modules/
generated/sklearn.decomposition.PCA.html

Shttps://jmlr.org/papers/v9/vandermaaten08a.html

lOhttps://github.com/andrcwpatrickdu/
adversarial-yolov3-cowc
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https://www.jdpower.com/cars/shopping-guides/how-much-does-it-cost-to-wrap-a-car
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://jmlr.org/papers/v9/vandermaaten08a.html
https://github.com/andrewpatrickdu/adversarial-yolov3-cowc
https://github.com/andrewpatrickdu/adversarial-yolov3-cowc

comparison in Figure S4. Interestingly, they conclude that
weather augmentations do not considerably improve the re-
sults. However, we find that weather augmentations during
optimization significantly affect the distribution of colors by
pushing a significant fraction of pixels away from the edges of
the RGB cube. This type of effect can be used to constrain the
optimized space, which, without any strict constraints, seems
to attempt to drive the optimization outside the RGB cube
(hence causing crowding at the edges).



CP-On-GC (Du et al.)

CP-On-GCW (Du et al.)
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Fig. S4: Color distribution in adversarial patches.



Average Precision vs Blur Level
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Fig. S5: Each point on the solid lines corresponds to a syn-
thetic model trained using the corresponding blur level. Each
such model is evaluated on the real validation set. The hor-
izontal dashed lines represent the real models’ performance
on the real validation set. The vertical dotted lines represent
the maxima. The red line represents the average curve of the
other three curves. As shown by this analysis, 0 = 2.4 is the
optimal blur level.
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Fig. S6: Visualization of vehicle category distribution in the
LINZ dataset: each bar signifies the number of samples asso-
ciated with a specific vehicle category. The figures within the
brackets indicate the proportion of total vehicles represented
by each class.

Fig. S7: Examples of T-U textures obtained with different
initializations. The grey region maps to the underside of the
car which is ignored by the adversarial optimization.
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Fig. S8: Embeddings of background images and vehicles with
original and T-U texture maps.



Anti-aliasing, no blurring

Anti-aliasing, blurring

Fig. S9: The first row represents the coarse renderings by PyTorch3D. The second row represents the result of applying anti-
aliasing. The third row represents the result of applying both anti-aliasing and blurring.



Fig. S10: Examples of the labeled LINZ dataset.



Fig. S11: The odd rows represent original images from the LINZ dataset. The even rows represent the corresponding back-
ground LINZ images, where the vehicles have been automatically removed.



Fig. S12: Examples of the GMaps background dataset.
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Fig. S13: Examples of the original PT3D images.
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Fig. S14: Adversarial and random texture maps. The right side corresponds to the car’s underside, which the adversarial
optimization ignores.
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Fig. S15: Visualizations of the textures from Figure S14 applied to a car mesh.
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Fig. S16: Illustrations of vehicles sourced from the PT3D datasets featuring adversarial and random texture maps.



Fig. S17: Examples of the original Blender images.
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Fig. S18: Illustrations of vehicles sourced from the Blender datasets featuring adversarial and random texture maps.



Original Mesh Shape-only attack Combined: A-Fc-seq. Combined: A-Fc-par. Combined: A-Fc-par. Combined: A-Fc-par.

Fig. S19: Visualization of different shape-based attacks and their corresponding displacement maps.



