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This supplementary material presents the following
details which we could not include in the main paper due
to space constraints. The additional references for this
elaboration are also added here.
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1. VIZUALIZATION

1.1. Analysis of Attention and Feature Maps
for Scene 1

Figure 1 and Figure 2 show the raw RGB and
thermal images respectively for Scene 1. The
RGB image captures a nighttime street scene
with multiple cars and pedestrians, while the
thermal image highlights the heat signatures,
particularly making human figures more promi-
nent.

In Figure 3, we visualize the self-attention
maps for both RGB and thermal streams. The
RGB self-attention map shows scattered fo-
cus across spatial patches, with notable activa-
tion around high-contrast areas like car bound-
aries and bright reflections. The thermal self-
attention map, in contrast, places strong focus
on human silhouettes and heat-reflective sur-
faces, which aligns with the thermal modality’s
sensitivity to temperature differences.

Figure 4 displays the feature maps extracted
after the attention modules. The RGB features
retain structural patterns, such as car contours
and road edges, while the thermal features em-
phasize human figures with less environmental
detail. The cross-attention features reveal a
fusion where structural and thermal cues are
combined, highlighting both human and vehi-
cle zones, demonstrating the complementary
enhancement achieved by the cross-modal de-
sign.

Observations: The RGB stream alone strug-
gles with dark regions, while the thermal stream
compensates by providing reliable human de-
tection. The cross-attention fusion successfully
integrates both modalities, enriching the rep-
resentation and improving feature robustness
under low-light conditions.

Fig. 1. RGB Image Fig. 2. Thermal Image

Fig. 3. Attention Maps of RGB, and Thermal Images

Fig. 4. Feature Maps of RGB, Thermal, and Cross Atten-
tion module



1.2. Analysis of Attention and Feature Maps
for Scene 2

Figure 5 and Figure 6 display the RGB and
thermal images of Scene 2. This scene features
a night urban setting with pedestrians under
streetlights, where shadows and reflections cre-
ate visually challenging conditions in the RGB
space. The thermal image effectively highlights
the human heat signatures, especially in areas
obscured or darkened in the RGB frame.

In Figure 7, the self-attention maps show
distinct behavior: the RGB attention focuses
mainly on high-brightness zones and sharp tex-
ture changes, while the thermal attention prior-
itizes human figures and their surroundings,
demonstrating modality-specific selectivity.
This suggests the attention mechanism lever-
ages complementary information from each
domain.

Figure 8 presents the post-attention feature
maps. The RGB features accentuate road lines
and lamp posts, while the thermal features iso-
late the heat-emitting pedestrians. The cross-
attention fusion produces a richer representa-
tion, integrating geometric and thermal cues,
which results in improved focus on pedestrians
and their immediate vicinity.

Observations: In Scene 2, the RGB stream
struggles with strong shadows and low contrast,
while the thermal modality reliably highlights
human activity. The fused cross-attention fea-
tures demonstrate how combining these modal-
ities strengthens both spatial and semantic rep-
resentation, ultimately supporting better low-
light scene understanding.

Fig. 5. RGB Image Fig. 6. Thermal Image

Fig. 7. Attention Maps of RGB, and Thermal Images

Fig. 8. Feature Maps of RGB, Thermal, and Cross Atten-
tion module



2. EXPERIMENTAL SETTINGS

2.1. V-TIEE dataset

In the V-TIEE dataset, we have systematically
captured RGB and thermal images under vary-
ing gain and exposure conditions. Specifically,
images were recorded at two distinct gain set-
tings, each with five different exposure values.
Furthermore, in four distinct scenes, we have
expanded the exposure range to include ten dif-
ferent values for each gain setting. The gain
values in our dataset span from 0 dB to 44.99
dB. Scenes include lower gain settings at 0,
4.99, 19.99, 23.99, and 24.99 dB, as well as
higher gain settings at 23.99 and 44.99 dB. The
exposure times range from as short as 1/20000
seconds to as long as 10 seconds. This ex-
tensive range of exposure settings can also fa-
cilitate the dataset’s utility in generating High
Dynamic Range (HDR) [1] images, providing a
robust resource for HDR imaging research and
applications.

2.2. Mutiple exposure of V-TIEE dataset in
high and low gain conditions.

This extensive range of exposure settings can
also facilitate the dataset’s utility in generat-
ing High Dynamic Range (HDR) [1] research
and applications in lot light image datasets.
Since this dataset is not used for training,
performance on this evaluation dataset would
demonstrate the generalization of the models.
In practical scenarios, noise levels increase as
the exposure of a scene decreases. Our V-TIEE
dataset captures images under various gain con-
ditions, thus incorporating noise characteristics
that are similar to real-world settings.

2.3. Visual representation of real-world V-
TIEE dataset

In practical scenarios, noise levels increase as
the exposure of a scene decreases. Our V-TIEE
dataset captures images under various gain con-
ditions, thus incorporating noise characteristics

typical of real-world settings. The low-light in-
put images, depicted in Fig. 10, were utilized
in our experiments. For enhanced visual com-
prehension, amplified versions of these inputs
are also presented. Additionally, we provide a
well-exposed image of the same scene with the
thermal image.

2.4. Noise incorporation in simulated low-
light LLVIP dataset

Noise model: [2] To encapsulate the funda-
mental characteristics of noise, it is considered
a variable with a mean of zero and variance
from two independent sources. Specifically,
the following representation applies to pixels
below the saturation threshold:

V ar(n) = ϕt/g2 + σ2
read/g

2 (1)

Here, g represents the sensor gain. The
initial component describes the Poisson distri-
bution of photon arrival, directly proportional
to the accumulated photon count ϕt. The final
component, representing the pre-amplification
stage, accounts for noise from the sensor’s
readout process. We applied this method to
add noise to the low-light synthetic LLVIP [3]
dataset, ensuring real-world conditions. The
amplified image in Fig.11 is provided solely
for visual representation, of the noise simula-
tion.



Fig. 9. The figure shows all the indoor and outdoor scenes of RGB and Thermal images in the V-TIEE dataset which
we captured in real-time for the low light image enhancement. For space constraints, we are only showing RGB
images.



Fig. 10. The figure shows noise in our real-world V-TIEE dataset, showing low-light input, amplified input, well-lit,
and corresponding thermal images. Amplified images, enhanced by a factor of 10, highlight the noise in low-light
images.

3. ADDITIONAL QUALITATIVE
RESULTS
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Fig. 11. The figure shows noise incorporation in the simulated low-light LLVIP dataset, low-light input, amplified
input, well-lit, and corresponding thermal images. Amplified images, enhanced by a factor of 10, highlight the noise
in low-light images.
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a) Simulated LLVIP Dataset b) Our Real V-TIEE

Fig. 12. Qualitative results on the synthetic LLVIP dataset and real-world V-TIEE dataset. Columns denote different
scenes. The first two rows show the input visible and thermal images. The next five rows are the outputs from RT-X
Net and state-of-the-art visible image enhancement algorithms. The last row shows the reference well-exposed image.
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