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Fig. 1. VOC test mAP demonstrating the considerable impact
of bounding box noise on model performance in prior state-
of-the-art models, including OA-MIL and SSD-Det, com-
pared to our proposed FMG-Det algorithm.

1. EFFECTIVENESS OF PRIOR APPROACHES IN
HIGH NOISE SCENARIOS

Figure 1 presents results on PASCAL VOC at various noise
levels, ranging from 0.0 (no noise) to 1.0 (severe noise). Prior
work only focused on noise levels up to 0.4; opting to not even
run their models at higher noise levels. The Faster RCNN
model is just a standard detector without any noise mitigation
approaches. OA-MIL [1] and SSD-Det [2] are prior noise mit-
igation approaches that are added to a Faster RCNN model.
As the amount of noise increases beyond 0.4, the mAP deteri-
orates significantly for each of these approaches. Our pro-
posed method, FMG-DET, addresses this shortcoming, re-
taining strong performance even under severe noise.

2. INSTANCE INTERPOLATION MODULE

Figure 2 provides an overview of our Instance Interpolation
module. The details of this module are available in the main
paper.
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Fig. 2. An overview of our proposed Instance Interpola-
tion module. Both the corrected and noisy bounding boxes
are passed to this module. It then extracts features for each
bounding box using the backbone that already exists in the de-
tector, and using these features, predicts a value γ that is used
to then interpolate between the corrected and noisy boxes.



Shots Model 0.0 0.2 0.4 0.6 0.8 1.0 MAE

1-shot
Faster R-CNN 19.2 15.3 5.1 0.8 0.4 1.7 12.1
OA-MIL 22.1 14.7 4.9 1.4 0.7 2.1 11.6
FMC 17.6 15.3 7.8 3.5 2.6 1.3 11.2
SSD-Det 21.8 18.3 14.7 4.7 1.1 1.6 8.8
FMG-Det 21.4 19.2 10.8 6.0 3.3 2.4 8.7

2-shot
Faster R-CNN 37.7 28.7 12.0 3.6 2.1 3.3 23.1
OA-MIL 41.2 31.5 11.5 3.6 1.6 3.1 22.3
FMC 36.5 29.0 17.9 11.1 8.0 5.5 19.7
SSD-Det 40.1 33.8 28.4 11.9 5.4 4.4 17.0
FMG-Det 40.4 35.7 22.9 13.7 7.4 6.4 16.6

3-shot
Faster R-CNN 52.2 37.8 14.3 5.4 3.3 5.2 32.5
OA-MIL 52.3 39.1 15.8 5.6 3.3 4.3 32.1
FMC 50.1 40.7 25.6 15.3 12.2 8.8 26.8
SSD-Det 51.9 44.8 37.2 15.9 7.4 6.5 24.9
FMG-Det 51.6 41.9 30.9 17.9 11.2 11.1 24.7

5-shot
Faster R-CNN 59.6 44.7 21.2 8.0 5.6 8.3 35.0
OA-MIL 61.1 49.4 23.4 8.3 5.3 6.3 34.0
FMC 59.6 49.0 33.4 20.9 17.2 14.2 27.2
SSD-Det 58.1 49.7 42.8 21.8 10.7 8.7 27.6
FMG-Det 59.7 50.6 39.5 23.3 16.3 14.0 25.7

10-shot
Faster R-CNN 63.0 49.5 22.2 8.9 6.2 10.3 36.3
OA-MIL 63.6 55.6 28.7 11.3 5.9 7.0 34.3
FMC 62.2 52.4 40.5 24.6 20.3 18.2 26.6
SSD-Det 62.4 56.1 50.1 26.5 13.2 13.6 26.0
FMG-Det 61.8 57.4 44.5 26.9 20.0 17.5 25.0

Table 1. Mean average precision for few-shot PASCAL VOC Novel Set 1 dataset.

3. FULL FEW-SHOT DETECTION RESULTS

Table 1 contains the full results for our few-shot experiments
in the main paper, highlighting the performance of each ap-
proach at all noise levels for each few-shot scenario.

4. COMPUTATIONAL EFFICIENCY OF FMC
PIPELINE

While the foundation model correction pipeline involves large
foundation models, it can be run entirely offline with the re-
mainder of the FMG-Det architecture being leveraged to pri-
oritize performance, or a more efficient detector leveraged to
prioritize training and inference time. For the experiments in
this paper, due to compute limitations, we ran our experiments
with a batch size of 1 on a single Tesla V100. Computation
scales primarily with the number of images but also with the
number of bounding boxes in each image. For COCO, this
resulted in a rate of 2.475 seconds/image, and for VOC, a rate
of 1.350 seconds/image. Note that due to the pipeline be-
ing training-free, it is highly conducive to distribution across
multiple GPUs, where the dataset can easily be sharded, dra-
matically increasing the inference speed.

5. FULL ABLATIONS

Table 2 contains ablations for our proposed FMG-Det model,
starting from the base detector, Faster RCNN [3], and adding
each of our proposed components, along with OA-MIL. Our
Foundation Model Correction pipeline makes the largest
contribution to the overall performance of our proposed ap-
proach, improving MAE from 36.4 to just 17.5. Relative
to state-of-the-art approaches, just including this pipeline
already achieves state-of-the-art performance on PASCAL
VOC. This is critical as it is fully detector agnostic and there-
fore it is reasonably assumed that virtually any object detector
would enjoy similar benefits. Interestingly, adding OA-MIL
directly on top of this pipeline slightly decreases perfor-
mance. However, adding our instance interpolation module
to OA-MIL does boost performance further by a substantial
margin. We did explore using SSD-Det instead of OA-MIL to
see whether performance could be improved further by sim-
ply swapping them. Yet, we found that this, similar to adding
OA-MIL directly on top of the foundation model correction
pipeline, did not result in further performance improvements,
suggesting that there is some redundancy between the learned
denoising procedure in SSD-Det and our own proposed con-
tributions. We hypothesize that adding the FMC pipeline



Model 0.0 0.2 0.4 0.6 0.8 1.0 MAE
Faster RCNN 77.3 71.9 44.3 19.3 13.5 19.0 36.4
FM Correction 75.0 72.1 66.1 55.2 46.5 44.0 17.5
FM Correction + OA-MIL 75.1 72.2 67.0 55.5 44.4 41.4 18.0
FM Correction + Instance Interpolation 76.6 73.4 67.8 58.2 48.7 44.9 15.7
FMG-Det 75.7 73.2 69.3 62.6 50.2 46.5 14.4

Table 2. Ablations for FMG-Det using the Pascal VOC 2007 dataset, demonstrating the performance impact of each component.
Starting from Faster RCNN, FMG-Det adds the Foundation Model Correction (FM Correction) pipeline, instance interpolation,
and then leverages OA-MIL

.

diminishes the issues of object drift and group prediction,
two of the primary issues with OA-MIL that motivated SSD-
Det, reducing the effectiveness of the latter’s improvements.

5.1. Experimental Details

Our model was built off of the OA-MIL [1] repository, which
is in turn built on top of MMDetection [4]. We use Faster
R-CNN [3] with a ResNet-50 [5] backbone as our object de-
tector architecture due to its simplicity and the fact that we
are not prioritizing overall model performance, rather we are
focused on improving model robustness. However, note that
FMG-Det is directly compatible with any 2-stage detector and
the Foundation Model Correction pipeline is compatible with
virtually any detector or alternative denoising technique. We
use many of the defaults provided by MMDetection for the
Faster R-CNN model. For our experiments on the full VOC
and COCO datasets, we use a batch size of 8 for all of our
experiments. All models are trained using the standard 1x
learning schedule, which is run over 12 epochs and consists
of SGD with a learning rate of 0.02, momentum of 0.9, a
weight decay of 0.0001, a warmup linear scheduler that exe-
cutes over 500 iterations with a warmup ratio of 0.001, and a
multistep scheduler with milestones at 8 and 11 epochs with
a gamma value of 0.1. For the OA-MIL [1] and SSD-Det [2]
baselines, we used the defaults provided in the authors’ repos-
itories. For our foundation model correction pipeline, we used
an α of 0.5 to mix the scores from SAM and CLIP and a λ
of 0.05 as our IoU threshold for accepting a correction. We
selected these values by empirically running on subsets of the
data and adapting them to minimize the number of dramati-
cally shifted bounding boxes, e.g., egregious mistakes such as
placing the bounding box around the background rather than
the target.

We use the same training procedure outlined in [6] to
train our few-shot models, where a base model is trained, the
weights are frozen except the head, then the model is fine-
tuned on a mixed base+novel few-shot set. We train the base
model using each of our proposed techniques and baselines,
using the SAM hyperparameters that are outlined above. We
do leverage slightly different hyperparameters for fine-tuning
on the novel set. Namely, we fine-tune most of the models

with a learning rate of 0.1 and a fixed learning schedule. The
only exception is SSD-Det [2], which we found works best
with the same learning scheduler as above, just with a lower
learning rate of 0.01.

6. LIMITATIONS

Our proposed approach is reliant upon the performance of
SAM on the target dataset. While SAM has demonstrated
exceptionally strong performance across a wide variety of
domains [7], in highly specialized domains that involve dis-
tinct image modalities, such as medical imaging, our pro-
posed approach might not be effective if the quality of the
extracted masks is low. However, this issue can be mitigated
by leveraging a SAM variant that is better suited for the tar-
get dataset, whether it is a model like MedSAM [8], which
has been specifically trained for medical imagery, or simply a
SAM model that has been finetuned on images that are more
closely aligned with the detection task. Another limitation
of our proposed approach is that it struggles with bounding
boxes that have no overlap with the groundtruth object. In
these cases, SAM is likely to segment part of the background
or an adjacent object. This can result in severe failure scenar-
ios, where the box becomes more inaccurate than the noisy
groundtruth. We attempt to mitigate such scenarios by dis-
carding corrected boxes with no overlap, defaulting to the
noisy groundtruth. However, this solution negates the ben-
efits of the foundation model correction pre-processing step.
Lastly, we were also unable to test our approach on noisy,
publicly available datasets that could be reported in our paper.
This dataset would need to have naturally noisy training labels
but clean, high-quality testing labels for validation. However,
as discussed in the main paper, we do believe that our syn-
thetic setting is more challenging than most real world set-
tings. Real world noise is likely to follow a standard pattern,
e.g., perhaps a target is frequently occluded and a common
mistake is to place the box over the entire target rather than
just the portion that is visible. This standard pattern would be
much easier to learn and correct than the stocastic pattern that
is applied in our experiments.
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