
1

GIVE: A Multi-Agent Framework for Generating

Immersive Multi-Modal Virtual Environments for 3D

Games
Supplementary Materials

2

1. Details of Expert Team Agents:

a. Details of the Visual Expert Team:

The team includes the following agents:

Working of the weather system generator agent (blue box).

• Weather System Generator: An LLM-powered agent that manipulates global volume

parameters in the Unity Game Engine (specifically the high-definition rendering pipeline)

to create weather conditions matching the scene description. It adjusts properties like

cloud appearance, wind speed, fog conditions, and precipitation.

Working of the weather system generator agent (blue box).

• Lighting Function: Similar to the Weather System Generator, this LLM-powered agent

manipulates existing lighting assets to match user requirements. It converts high-level

3

semantic statements about lighting conditions into specific property values, such as light

position and intensity during different times of the day or mythical lighting conditions.

• Terrain Generator: Inspired by Zhang et al.'s work [1], this agent uses an LLM to

generate Gaussian-Voronoi maps of terrains, which are converted to heightmaps. Terrain

features like mountains and valleys are represented through overlapping Gaussians,

which are then used to paint Voronoi cells, adding noise to the terrain. The output is

smoothed using Gaussian blur and converted into a heightmap, which the game engine

uses to alter terrain height.

• Texture Generator: This agent generates prompts for a text-to-image model to create

texture images based on the required scene textures. The agent then calls the text-to-

image model and the generated texture images are then used as texture maps in the game

engine. A number of post-processing steps are completed in order to make the generated

image tile-able. This includes offsetting the generated image by 50% in the horizontal

and vertical directions, creating a mask to hide the seams in the middle, and then passing

the masked image to an image model to generatively infill the sections. This post-

processing step creates repeatable texture maps.

4

• Asset Choosing Agent: Given a list of pre-existing assets available with the user (e.g.,

trees, bushes, rocks, etc.), this agent decides what assets match the scene description and

should be added to the virtual environment. Additionally, it decides on the density of the

selected asset to be instantiated in the game engine (for e.g., a forest might have dense

trees)

b. Details of the Audio Expert Team:

The team comprises three main agents:

• Audio Generator: This tool processes a list of audio descriptions by converting them into

textual prompts for a text-to-audio model. Unlike an agent with an integrated language

model, this tool solely focuses on calling the text-to-audio model to generate

corresponding audio files.

5

• Spatial Audio Agent: This is an LLM-powered agent designed to adjust the audio

properties of generated audio source files within the Unity game engine. Similar to the

weather system generator and lighting function agent, this tool operates based on a

system prompt that specifies the properties it can modify, the definitions of these

properties, and their respective value ranges. It generates values for various audio

properties for each audio source file, including parameters such as the audible range,

spatial blend (3D/2D audio), Doppler effect level, and more.

• Audio Placement Agent While the placement of objects is typically managed by the

spatial expert, determining the optimal placement of audio elements is best handled by

the audio expert. This LLM-powered agent collaborates with the spatial expert tool to

understand the scene, specifically the locations of various objects in relation to the

camera. Using this information, it decides whether an audio source should be attached to

multiple game objects (e.g., bird chirping sounds on multiple trees), placed near specific

objects (e.g., insect sounds above the ground and near rocks), or positioned freely with

respect to the camera (e.g., wind noises above the user). The agent generates a list

detailing the number and locations of audio sources to be instantiated. This information is

then passed on to the spatial expert to place the audio elements accordingly.

c. Details of the Spatial Expert Team:

The spatial expert team aims to leverage 3D environments provided by game engines and has

two main roles: analyzing and understanding the virtual scene as it is manipulated, and

6

collaborating with other expert teams to place assets semantically in the 3D environment.

Currently, the spatial expert team uses two main tools:

• Scene Analysis & Understanding Tool: Inspired by the LLMR paper [2], this tool is

implemented directly in the game engine. It searches the scene for objects with mesh

renderers (visible 3D objects) and returns a detailed document containing the object’s

name, distance from the main camera (the character’s ‘eyes’), x, y, z coordinates, and

bounding box dimensions. This document is shared with relevant agents in other expert

teams.

• Object Placement in 3D Tool: Also implemented in the Unity game engine, this tool

parses outputs from other agents/tools and runs one of three functions: assigning as a

child of existing game objects with local x, y, z offsets; placing near a target object with

global x, y, z offsets; or placing freely with global x, y, z offsets relative to the main

camera. This tool is called whenever other tools need to place objects in 3D.

2. Implementation Details

In this section, we will highlight the implementation of our complete pipeline, which consists of

two main components: the game engine workflow and the multi-agent framework.

For our game engine, we selected Unity because of its popularity among novice game developers

and its beginner-friendly interface. We specifically opted for the high-definition rendering

pipeline (HDRP) in Unity, as it allows for more immersive game assets, such as global volume

assets (enabling clouds, fog, etc.). Additionally, HDRP provides more complexity, which poses

challenges for code generation workflows due to the more complex documentation and the lack

of extensive publicly available examples.

Here's the snapshot of the tools and libraries used in our implementation:

Game Engine-specific:

• Unity Game Engine – v2022.3.30f1

• High-Definition Rendering Pipeline (HDRP) – 14.0.11

• Game Assets (e.g., trees, bushes, etc.) – Unity Sample Terrain Scene (Link)

• Scripting Language – C#

Multi-Agent Framework-specific:

• Scripting Language – Python 3.11.9

• Multi-Agent Libraries

o LangGraph – 0.0.66

o CrewAI – 0.30.11

o CrewAI Tools – 0.2.6

• Large Vision and Language Models (through OpenAI API)

o GPT 4.1

o o4-mini

• Text-to-Image Models (through OpenAI API)

o Dall.E 2

https://assetstore.unity.com/packages/3d/environments/unity-terrain-hdrp-demo-scene-213198#content

7

• Text-to-Audio (through ElevenLabs API)

o Sound Generation – v1

Below, we will first define the game engine component of the workflow, followed by the multi-

agent framework.

a. Game Engine Workflow in Unity –

Given our goal of creating immersive virtual environments, we picked specific components of

the game engine scene that would contribute most towards making the scene more immersive.

As a result, we selected the following components:

- Global Volume: The global volume component can be used to apply post-

processing effects or other scene-wide settings uniformly. Some of these settings

include volumetric clouds, fog, physically-based skies, etc. (Link)

Example of the settings/properties associated with Global Volume.

- Lighting: The lighting component in Unity is essential for illuminating scenes and

creating realistic or stylized visual effects. It includes various types of lights such

as Point Lights, which emit light in all directions from a single point, Spot Lights,

which emit light in a cone shape, and Directional Lights, which simulate sunlight

by emitting light in a single direction. (Link)

https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@14.0/manual/Volumes.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@14.0/manual/Light-Component.html

8

Example of the settings/properties associated with Lighting.

- Terrain: The Terrain Component is used to create expansive, detailed landscapes.

It enables the sculpting and painting of terrain features such as mountains, valleys,

and plains. Additionally, it allows us to add components like textures, trees, grass.

etc. to the scene. (Link)

https://docs.unity3d.com/Manual/terrain-UsingTerrains.html

9

Example of the settings/properties associated with Terrain.

- Particle Systems: In Unity, the Particle System Component is used to simulate

and render fluid entities like smoke, fire, rain, and explosions by generating and

animating large numbers of small 2D images or meshes called particles. (Link)

o Note: In our work, we create Particle System prefabs for rain and snow,

and the multi-agent framework simply decides to enable or disable the

prefab based on the scene description.

Example of the settings/properties associated with the Particle System.

Using these components, we create a template scene in Unity. As these components can be

altered and updated through the scripting API, we create C# scripts for each of the component,

which consist of methods that: search and read the relevant ‘.csv’ outputs of the multi-agent

framework; and update the properties of the component every few hundred frames. These scripts

are then attached to a ‘Scene Manager’ game object, from where they can easily be

activated/deactivated if necessary. In addition to these scripts, we also have methods that capture

the scene through different cameras every few hundred frames. The captured scenes are saved as

images (.png) and are inputs to the Reflective Partner (R) when required.

To make the scenes more realistic, we also have the multi-agent framework decide what assets

need to be added to the scene, for instance different types of trees, bushes, etc. To make this

possible, we collect HDRP assets created by Unity for the demo scenes and store them in the

folder. Depending on the multi-agent output, we create a script that searches for the relevant

assets and randomly instantiates n copies of them in the scene on non-steep surfaces of the

terrain.

The above components and methods form most of our Game Engine workflow. In the section

below we will discuss the implementation of the multi-agent framework in detail.

b. Multi-Agent Framework:

While the agentic framework could be built from scratch using sequential calls to different

instances of LLMs, recent open source developments have introduced powerful libraries to

create intricate networks of agents with customizable communication channels. In our work, we

specifically use two such libraries: LangGraph and CrewAI.

https://docs.unity3d.com/Manual/class-ParticleSystem.html

10

- LangGraph uses the concept of graph networks to define multi-agent workflows.

The agents are initialized as nodes and communication between different agents is

initialized as edges. It is a low-level framework providing fine-grained control

over the flow of information, state of the application and cyclic execution of

tasks. (Link)

- CrewAI, on the other hand, is a library that offers high-level framework for

building agentic workflows. It focuses on role-playing as its central premise and

allows easy creation of agents and tasks using this concept. It also provides

options to allow agents to delegate tasks to one another and create hierarchical

workflows. (Link)

In this work, we utilize both libraries for their respective benefits. LangGraph is used to build the

overall framework, as it allows greater control over the flow of information and ease of

integrating human-in-the-loop. CrewAI is used to build the expert teams, where once they

receive tasks, the crews, with the respective roles, can potentially communicate with one another

and complete tasks.

The Manager, Planner, and Reflective partner serve as individual agent nodes in the LangGraph

framework, the Visual Expert node is a CrewAI crew, the Audio Expert is a set of LLM-powered

tools and the Spatial Expert is a set of Unity Methods interacting with the multi-agent framework

through simple file reading/writing. Below, I detail the implementation of each of these nodes,

along with their system prompts, type of LLMs, and the tools they have access to.

1. Manager (M): The manager is the first node in the LangGraph framework, where it

behaves as a chat-bot and directly interacts with the user in a turn-based interaction.

The details of the manager are given below:

- LLM Model: GPT 4.1 (temperature – 0.3) [low temperature to avoid deviating

from the topic of conversation]

- Maintains Memory: True

- Flow of Information:

i. User (𝑈) → Manager (𝑀)

ii. Manager (𝑀) → Planner (P)

- System Prompt:

You are an expert interviewer hired by a game development company. Your task is to extract detailed

information from a user about the type of scene they want to create and how they envision making it

immersive. Ensure that the conversation remains concise, ideally around 6 to 7 messages in total. If any

information is unclear, ask for clarification. If you still can't discern their needs, make reasonable

predictions based on the conversation. After gathering the information, you need to create a detailed

and creative description of the immersive scene that covers the weather, lighting, terrain, types of

vegetation, audio elements and their general placements in the scene. Ask the user if the scene

description is suitable and then move on to the next node.

Interview Objectives:

Immersive Visual Elements:

Ask the user what visual elements are most important to them.

Probe for details about colors, lighting, textures, and visual effects.

Audio Elements:

Ask the user about the necessary audio elements.

Inquire about background music, sound effects, voice-overs, and ambient sounds.

Location, Setting, and Environment:

Ask the user about the desired location, setting, and environment.

https://langchain-ai.github.io/langgraph/
https://www.crewai.com/

11

Clarify whether they want a realistic or fantastical setting, and gather details about

specific features or atmospheres they envision.

Example Interview Flow:

Introduction:

"Hello! I'm here to help you design an immersive scene for your game. Could you start by telling

me what kind of visual elements are most important to you?"

Follow-up on Visual Elements:

"Great! Can you describe the colors, lighting, and textures you envision for this scene?"

Immersive Audio Elements:

"Now, let's talk about audio. What kind of background music or sound effects do you think will

make this scene more immersive?"

Clarification on Audio Details:

"Can you provide more details about any specific ambient sounds or voice-overs you want to

include?"

Setting and Environment:

"Let's discuss the setting and environment. Where do you want this scene to take place? Is it a

realistic location or something more fantastical?"

Clarification on Environment:

"Can you describe any specific features or atmospheres you want in this environment?"

Final Clarifications and Predictions:

"Is there anything else you want to add or clarify about your scene? If I understand correctly,

you want [summarize key points]. Is that right?"

Note: Adapt your questions based on the user's responses to ensure all necessary details are

captured effectively.

2. Planner (P): The planner is the intermediary node between the manager (M), the

experts (𝑉𝐸 , 𝐴𝐸 , 𝑆𝐸) and the reflective partner (R). For the planner, we also utilize the

function calling option enabled by the OpenAI API. Function calling, similar to tools,

allows the LLM to output structured data, call external APIs and so on. In the case of

the Planner, we specifically use function calling to get a structured list of tasks for the

expert teams. The details of the planner are given below:

- LLM Model: GPT 4.1 (temperature – 0.8) [higher temperature to make logical

predictions in the event the user’s requirements are vague]

- Maintains Memory: True

- Flow of information:

i. Manager (𝑀) → Planner (𝑃)

ii. Planner (𝑃) → Visual Expert (VE)

iii. Planner (𝑃) → Audio Expert (𝐴E)

iv. Planner(𝑃) ↔ Reflect Partner (𝑅)

- System Prompt:
You are an expert planner.

You have to lay out specific plans for expert agents to complete from the description of the scenario.

The specific plan for these agents should entail a detailed description of what their tasks should be.

Here's the description: {detailed_description}.

- Function Specifications:

https://platform.openai.com/docs/guides/function-calling

12

 detailed_weather: str = "Detailed description of the weather conditions (e.g., 'sunny with scattered

clouds'

 detailed_lighting: str = "Detailed description of the lighting conditions (e.g., 'bright sunlight

with the sun at noon')

 detailed_geographic_terrain: str "Detailed description of the geographic terrain (e.g., 'rocky

mountains with a steep incline')

 terrain_texture: List[str]= "List of textures used for the terrain ground (e.g., ['rock', 'sand',

'mud', 'grass'])

 flora_and_details: List[str] = "List of flora and details present in the scene (e.g., ['pine trees',

'bushes','twigs', 'small rocks', 'large rocks']).

 flora_density: List[str] = "List of density values corresponding to the flora and details (e.g.,

['dense', 'dense','few','medium', 'sparse']

 detailed_audio_sounds_description: List[str]= "List of very detailed descriptions of audio sounds

used in the scene (e.g., ['woodpecker pecking on the tree', 'small leaves rustling in the wind'])

3. Visual Expert (𝑽𝑬) Crew: For the visual expert team, we use the CrewAI library to

create a crew of expert agents. The expert agents include weather systems generator,

lighting functions, terrain generator, texture generator, and asset adding expert. Each

of the agents and the CrewAI specifications are mentioned below:

3.1 Weather Systems Generator: This agent specializes in generating values to

manipulate the Global Volume properties in the game engine.

- LLM Model: GPT-4.1 (temperature = 0.8)

- Maintains Memory: False

- Flow of information:

i. Planner (𝑃) → Visual Expert Agent (𝑣𝑤𝑒𝑎𝑡ℎ𝑒𝑟)

- System Prompt:

You need to predict values that will satisfy the users requirement. Assume that the user will not

provide any additional information.

The values you can change are as follows:

densityMultipliervalue - The global density of the volumetric clouds. (range 0 and 1)

shapeScaleValue - - Controls the size of the noise HDRP uses in the shaping stage to generate the

general cloud shapes. (range 0.1 to 30)

shapeFactorvalue- Controls the amount of shaping to apply to the cloud volume. A higher value produces

less cloud coverage and smaller clouds (range 0 to 1)

erosionFactorValue- Controls the amount of erosion to apply on the edge of the clouds. A higher value

erodes clouds more significantly. (range 0 to 1)

erosionScalevalue- Controls the size of the noise HDRP uses in the erosion stage to add local details to

the cloud edges. (range 0.1 to 30)

earthCurvatureValue- The curvature of the cloud volume. This defines the distance at which the clouds

intersect with the horizon. (range 0 to 1)

bottomAltitudeValue- Controls the altitude of the bottom of the volumetric clouds volume in meters.

(range 1000 to 4000)

altitudeRangeValue- Controls the size of the volumetric clouds volume in meters (range 1000 to 4000)

windSpeedvalue- Sets the global horizontal wind speed in kilometers per hour. (range 4 to 200)

windOrientationValue- Controls the orientation of the wind relative to the world-space direction x-

axis.(range 0 to 360)

ambientLightProbeDimmerValue- Controls the influence of light probes on the cloud volume. A lower value

suppresses the ambient light and produces darker clouds overall. (range 0 to 1)

13

sunLightDimmerValue- Controls the influence of the sun light on the cloud volume. A lower value

suppresses the sun light and produces darker clouds overall (range 0 to 1)

scatteringTintValueColorR- The color to tint the clouds. Red component out of 255

scatteringTintValueColorG- The color to tint the clouds. Green component out of 255

scatteringTintValueColorB- The color to tint the clouds. Blue component out of 255

densityCurveKeyFrameX1 = Controls the density (Y axis) of the volumetric clouds as a function of the

height (X Axis) inside the cloud volume. This value specifically corresponds to the X value of the first

point in the curve. (range 0 to 1)

densityCurveKeyFrameY1 = Controls the density (Y axis) of the volumetric clouds as a function of the

height (X Axis) inside the cloud volume. This value specifically corresponds to the Y value of the first

point in the curve. (range 0 to 2)

densityCurveKeyFrameX2 = Controls the density (Y axis) of the volumetric clouds as a function of the

height (X Axis) inside the cloud volume. This value specifically corresponds to the X value of the

second point in the curve. (range 1 to 3)

densityCurveKeyFrameY2 = Controls the density (Y axis) of the volumetric clouds as a function of the

height (X Axis) inside the cloud volume. This value specifically corresponds to the Y value of the

second point in the curve. (range 0 to 2)

densityCurveKeyFrameX3 = Controls the density (Y axis) of the volumetric clouds as a function of the

height (X Axis) inside the cloud volume. This value specifically corresponds to the X value of the third

point in the curve. (range 3 to 5)

densityCurveKeyFrameY3 = Controls the density (Y axis) of the volumetric clouds as a function of the

height (X Axis) inside the cloud volume. This value specifically corresponds to the Y value of the third

point in the curve. (range 0 to 2)

inputProvidedbyAgent - this is the input that was provided to you

- Expected Output: csv file containing relevant properties.

3.2 Lighting Function: This agent specializes in generating values to manipulate the

Lighting properties in the game engine.

- LLM Model: GPT-4.1 (temperature = 0.8)

- Maintains Memory: False

- Flow of information:

i. Planner (𝑃) → Visual Expert Agent (𝑣𝑙𝑖𝑔ℎ𝑡)

- System Prompt:

You need to predict values that will satisfy the users requirement. Assume that the user will not

provide any additional information.

The values you can change are as follows:

angDia = Angular diameter of the emissive celestial body represented by the light as seen from the

camera (in degrees). Used to render the sun/moon disk. (range 1.0 to 4.0);

flareSize = Size the flare around the celestial body (in degrees). (range 0 to 10.0);

flareFalloff = The falloff rate of flare intensity as the angle from the light increases. (range from 0

to 90.0);

flareTintColorR = Tints the flare of the celestial body. Red component out of 255;

flareTintColorG = Tints the flare of the celestial body. Green component out of 255;

flareTintColorB = Tints the flare of the celestial body. Blue component out of 255;

lightIntensity = the intensity of the light in lux. (range is from 70 to 13000);

emissionColorR = color of the sun light. Red component out of 255;

emissionColorG = color of the sun light. Green component out of 255;

emissionColorB = color of the sun light. Blue component out of 255;

colorTemp = Temperature of the sun light in kelvin (range is from 1500 to 20000);

14

multiplier = the light dimmer / multiplier on volumetric effects, between 0 and 16.;

shadowDimmer = the volumetric shadow dimmer value, between 0 and 1.;

x_rotation = the euler angle rotation along the x-axis for the sun light (range 0 to 180);

y_rotation = the euler angle rotation along the y-axis for the sun light (range 0 to 360);

z_rotation = the euler angle rotation along the z-axis for the sun light (range 0 to 360);

inputProvidedbyAgent = this is the input that was provided to you

- Expected Output: csv file containing relevant properties.

3.3 Terrain Generator: This agent has access to a tool that is powered by a reasoning

LLM. The role of this agent is to look at the task provided by the planner, specific to

the generation of the terrain, and based on that create a detailed description of the

different terrain features that maybe present. The detailed description is then sent to

the LLM-powered tool, which is prompted through a ReAct system, where it outputs

the height and influence of different Gaussians that would represent the terrain

features.

- LLM Model: o4-mini (temperature = 0.8)

- Maintains Memory: False

- Flow of information:

i. Planner (𝑃) → Visual Expert Agent (𝑣Terrain)

ii. Visual Expert Agent (𝑣TerrainDesc) →
 Terrain Generation Tool (𝑣TerrainGen)

- Terrain Description System Prompt:

You need to create an accurate description of a terrain based on the following topic: {terrain}

Provide the accurate description to the terrain generation tool;

- Terrain Generation System Prompt:
Using a user’s description, you can create terrains by employing Gaussian functions to express the

height of specific areas. This Gaussian function is defined by the equation: G=h⋅exp(−(d^2)/w)

, where:

h is the peak height,

d is the distance from the center of the Gaussian to any point in the terrain,

w is the weight of influence of that Gaussian.

Since you cannot scale or rotate the Gaussians directly, you need to create multiple Gaussians to mimic

scaling and rotation. For example:

A continuous valley is defined by multiple overlapping Gaussians with negative heights along a curve.

A sharp peak on top of a cliff consists of multiple Gaussians with higher weights of influence for the

cliff and smaller influences but taller heights for the peak.

You need to output four parameters for each Gaussian: the x and y coordinates of their centroid, h (peak

height), and w (weight of influence).

Solve this complex problem step-by-step by answering these questions and finally providing your

parameter outputs for each Gaussian. The grid size of the map is 257x257.

Does the user’s description have enough information about the terrain? If not, make logical predictions

to create the terrain. No additional details will be provided by the user.

From the description/prediction, how many terrain features are present?

For each of these terrain features, what is their general location on the map?

For each of these terrain features, how many Gaussians will be needed to represent the feature?

Remember, the user expects high-quality terrains, so do not limit the use of Gaussians for simplicity.

Focusing on one feature at a time, identify the peak heights of all Gaussians representing that feature.

Subsequently, thinking about their centroid locations and their corresponding weight of influence.

Repeat this for each feature.

Typically, a large mountain centered on the map would have a weight of around 600.

15

Finally, provide a combined output of all Gaussian parameters like this: (x1, y1, h1, w1),(x2, y2, h2,

w2),…

Only provide the values. For example, your output for the Gaussian parameters would be something like:

FINAL OUTPUT:(100, 100, 20, 150),(50, 200, -10, 300)

- Expected Output: grayscale heightmap of the terrain.

3.4 Texture Generator: This agent has access to a tool that is powered by a text-to-

image model. The role of this agent is to look at the task provided by the planner,

specific to the generation of the textures pertaining to the terrain and based on that

create a single sentence prompt for the text-to-image model to generate a 2D texture

map. The agent then calls the text-to-image API, which produces the necessary 2D

texture. Further post-processing steps are followed to create a repeatable, tile-able 2D

texture.

- LLM Model: GPT-4.1 (temperature = 0.8)

- Text-to-Image Model: Dall.E 2

- Maintains Memory: False

- Flow of information:

i. Planner (𝑃) → Visual Expert Agent (𝑣TexturePrompt)

ii. Visual Expert Agent (𝑣TexturePrompt) →

 Texture Generation Tool (𝑣TextureGen)

- Texture Prompt Generation System Prompt:

You need to create a simple one sentence prompt to generate a terrain texture. Provide the one sentence

prompt to the texture generation tool. Here is the topic: {terrain_texture}

Examples of one sentence prompt: Top-down high quality photo of desert sand, avoiding shadows, within a

1ft x 1ft area; Top down high quality photo of snow, avoiding shadows, within a 1ft x 1ft area

- Expected Output: 2D texture image.

3.5 Asset Choosing Agent: This agent has access to a list of pre-existing assets in the

game engine. When given a task, the agent receives a list of potential assets relevant

to the scene. The agent then determines whether any of these potential assets

resemble those in the pre-existing list. If a match is found, the agent selects the

appropriate asset and decides how many instances of that asset should be instantiated

in the scene.

- LLM Model: GPT-4.1 (temperature = 0.8)

- Maintains Memory: False

- Flow of information: Planner (𝑃) → Visual Expert Agent (𝑣TexturePrompt)

- Asset Choosing System Prompt:
"Here is the flora and flora density information: {flora}, {flora_density}"

"You have access to the following assets: Conifer, Cypress, Bush_A, Bush_B, BushDry_A,

BushDry_B, Grass_A, Grass_B, Grass_C, Grass_D."

"Based on the flora and flora density provided, identify if any of the available assets can

be made of use and their corresponding numbers. Your output should be a csv, where the first

row is names of the assets that can be used and second row is the number of that asset that

needs to be added."

"For density, if it is high density, add more than 1000 if its a tree and 5000 for grass,

bush, fern. Adjust accordingly for other densities."

16

"If there are classes of dense options such as dense trees, try using different types of

trees that match that description. We want to create a diverse and consistent scene whenever

possible."

"Example Output: Conifer, Grass_A, \n1000,5000"

- Expected Output: csv containing the name of pre-existing assets and their

corresponding instances.

4. Audio Expert (𝑨𝑬) Team: For the audio expert team, we develop a host of LLM-

powered tools that are tasked towards generating audio, identifying its spatial

properties, and deciding where in the scene the sounds will be placed. As a result, he

expert tools include the audio generator, spatial audio functions, and audio placement

tools. Each of the tools’ specifications are mentioned below:

4.1 Audio Generator: This tool receives the list of potential audio sources from the

planner agent. It then iterates through each of the audio descriptions and calls a text-

to-audio API (ElevenLabs API). Currently, the duration of the generated audio is set

to 10 seconds.

- Text-to-Audio Model: ElevenLabs Sound Generation v1.0 (prompt influence –

0.8) [prompt influence is similar to temperature but an inverse. Higher the value,

the less the model’s output will deviate from the prompt, i.e., prompt will have a

higher influence.]

- Flow of information:

i. Planner (𝑃) → Audio Expert Tool (𝑎𝑎𝑢𝑑𝑖𝑜_𝑔𝑒𝑛)

- Prompt: Each item in a list of audio descriptions.

- Expected Output: mp3 files corresponding to each audio description.

4.2 Spatial Audio Function: This agent specializes in generating values to manipulate

the spatial audio properties of each audio source in the game engine. It receives the

list of audio descriptions from the planner and decides on the spatial audio properties

based solely on the description.

- LLM Model: GPT-4.1 (temperature = 0.9)

- Maintains Memory: False

- Flow of information:

i. Planner (𝑃) → Audio Expert Tool (𝑎𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑎𝑢𝑑𝑖𝑜)

- System Prompt:

You need to predict values of spatial audio properties that will satisfy the users requirement. Assume

that the user will not provide any additional information.

The properties you can change are as follows:

loop = is the audio source going to loop in the scene? (should be a boolean - only choose from 'true' or

'false');

maxDistance = (Logarithmic rolloff) MaxDistance is the distance a sound stops attenuating at. (float

range 0 to 100.0);

minDistance = Within the Min distance the AudioSource will cease to grow louder in volume. (float range

0 to 2);

priority = sets the priority of the audio source (int range from 0 to 255, where 0 = high priority and

255 = low priority);

volume = The volume of the audio source (0.0 to 1.0);

17

spatialBlend = Sets how much this AudioSource is affected by 3D spatialisation calculations

(attenuation, doppler etc). 0.0 makes the sound full 2D, 1.0 makes it full 3D;

pitch = The pitch of the audio source. (float range from -3 to 3)

dopplerLevel = Sets the Doppler scale for this AudioSource. (float range 0 to 5)

Your output should strictly be only values for the properties above.

An example output would look like this:

true, 100, 0, 128, 1.0, 0.8, 1, 2

- Expected Output: csv file containing relevant properties.

4.3 Audio Placement Tool: This tool specializes in identifying where in the scene the

audio source needs to be instantiated. It receives the list of audio descriptions from

the planner and a list of objects, with their 3D spatial properties, from the scene

analyzer tool belonging to the Spatial Expert. It then decides whether the audio source

should be a child of an existing game object (thereby inheriting the parent’s

transformation matrix), or whether it should be placed next to an existing game

object, or whether it should be placed freely in 3D space with the location based on

the main camera.

- LLM Model: GPT-4.1 (temperature = 0.7)

- Maintains Memory: False

- Flow of information:

i. Planner (𝑃) → Audio Expert Tool (𝑎𝑎𝑢𝑑𝑖𝑜_𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)

- System Prompt:

You will be provided a list of audio sources and a list of existing game objects in a scene. You will

also be provided with an image of the scene from the perspective of the user. Your goal will be to place

the audio sources in the 3D scene. You can choose one of three ways of doing this: the audio sources can

be made children to existing objects from the list of objects presented to you, the audio sources can be

placed next to existing objects, and the audio sources can be placed freely in the scene with respect to

the location of the user. One audio source can be used multiple times. Depending on the type of process

you choose for each audio source, use the following output format:

For making children of existing object:

example output format: (audio source index, "assign_child", parent object, localXoffset, localYoffset,

localZoffset)

example output: (0, "assign_child", "tree_0", 0, 0.5, 0)

For placing next to existing object:

example output format: (audio source index, "place_next_to", target object, Xoffset, Yoffset, Zoffset)

example output: (4, "place_next_to", "bush_0", 2, 0, 1)

For placing freely in the scene:

example output format: (audio source index, "free", "free", Xoffset_wrt_user, Yoffset_wrt_user,

Zoffset_wrt_user)

example output: (2, "free", 25, 4, 15)

The input will provided in the following format: object name, distance to user, x_size, y_size, z_size

It is exceptionally important that you follow the format provided in the example output below. Do not

add any other preceding or succeeding text as it will break my system.

Example Input:

18

list of audio: "bird chirping sounds", "leaves rustling", "wind blowing", "insects chirping"]

list of objects:

tree_1, 12, 2, 4, 3

tree_0, 5, 2, 4, 3

stone_0, 6, 0.5, 1, 1

Example Output:

(0, "assign_child", "tree_0", 0, 0.5, 0)

(0, "assign_child", "tree_1", 0, 0.5, 0)

(1, "assign_child", "tree_0", 0, 0.75, 0)

(2, "free", "free", 4, 5, 0)

(2, "free", "free", 1, 3, 1)

(3, "place_next_to", "stone_0", 1, 1, 0)

(3, "place_next_to", "tree_0", 0.5, 0, 0)

(3, "free", "free", 4, 0.25, 3)

- Expected Output: csv file containing relevant properties.

5. Spatial Expert (𝑨𝑬) Team: The spatial expert team, as explained in the methodology

section, consists of the scene analysis and object placement tools implemented in the

Unity and interacts with the other agents through simple file reading and writing.

6. Reflective Partner (R): The reflective partner is the agent that evaluates the

performance of the experts (𝑉𝐸 , 𝐴𝐸 , 𝑆𝐸) by visually comparing their outputs to the

plan (T) generated by the Planner (P). It conducts this evaluation by receiving

screenshots of the scene as captured by a camera in the Unity game engine and being

powered by a vision language model. The details of the reflective partner are given

below:

- VLM Model: GPT 4.1 (temperature – 0.5)

- Maintains Memory: True

- Flow of information:

i. Planner(𝑃) ↔ Reflect Partner (𝑅)

ii. Camera Shots (𝐶) → Reflect Partner (𝑃)

iii. Planner (𝑃) → Experts (VE, AE, SE)

- System Prompt:
You are an expert reflective partner. Your goal is to think deeply about the plan that is provided to

you, understand the image and provide details on whether the image follows the plan, and if not how can

it be improved. Use the tool to output structured data

- Function Specifications:
detailed_reflection: str = "Detailed reflection on whether the visual scene matches the plan.

Why/Why not."

 detailed_weather: str = "Detailed description of the weather conditions (e.g., 'sunny with scattered

clouds'

 detailed_lighting: str = "Detailed description of the lighting conditions (e.g., 'bright sunlight

with the sun at noon')

 detailed_geographic_terrain: str "Detailed description of the geographic terrain (e.g., 'rocky

mountains with a steep incline')

 terrain_texture: List[str]= "List of textures used for the terrain ground (e.g., ['rock', 'sand',

'mud', 'grass'])

19

 flora_and_details: List[str] = "List of flora and details present in the scene (e.g., ['pine trees',

'bushes','twigs', 'small rocks', 'large rocks']).

 flora_density: List[str] = "List of density values corresponding to the flora and details (e.g.,

['dense', 'dense','few','medium', 'sparse']

 detailed_audio_sounds_description: List[str]= "List of very detailed descriptions of audio sounds

used in the scene (e.g., ['woodpecker pecking on the tree', 'small leaves rustling in the wind'])

3. Results

In this section, we will highlight more results produced by the individual agents, expert teams,

and tools in isolation of the multi-agent workflow.

a. Manager & Planner:

Below is Example 1 of the conversation between a user and a manager and the subsequent steps:

Please provide a short description of the scene you want to create.

User (q/Q to quit): i want to create a scene of a lush green forest

================================== Ai Message ==================================

Great! Let's dive into the details to make your lush green forest scene truly immersive.

Visual Elements

What specific visual elements are most important to you for this forest scene? For instance, do you have

preferences for the colors, lighting, textures, or any visual effects?

Audio Elements

To make the scene more immersive, what kind of audio elements are you thinking about? Do you want

background music, specific sound effects like rustling leaves or chirping birds, or even voice-overs?

Setting and Environment

Can you provide some details about the setting and environment? Is this forest realistic or more

fantastical? Are there any specific features like rivers, cliffs, or magical elements you envision?

Feel free to elaborate on anything else you think is crucial for your scene!

User (q/Q to quit): can you make predictions?

================================== Ai Message ==================================

Absolutely, I'll make some detailed predictions to create an immersive lush green forest scene for you.

Visual Elements

- **Colors**: A palette of vibrant greens for the foliage, mixed with earthy browns for tree trunks and

forest floor. Splashes of colorful flowers (reds, yellows, purples) to add variety.

- **Lighting**: Soft, dappled sunlight filtering through the tree canopy, creating a mix of light and

shadow on the forest floor.

- **Textures**: Rich, detailed textures for leaves, moss-covered rocks, tree bark, and the forest floor,

which might be covered with fallen leaves and twigs.

- **Visual Effects**: Gentle sway of the trees and plants in the breeze, occasional shafts of sunlight

breaking through the canopy, and perhaps some light mist or fog to add depth.

Audio Elements

20

- **Background Music**: Gentle, ambient music with natural instruments like flutes and strings to

enhance the serene atmosphere.

- **Sound Effects**:

 - Rustling leaves as the wind moves through the trees.

 - Birdsong from various species to indicate a thriving ecosystem.

 - Occasional animal sounds like distant deer calls or rustling from small critters.

 - A gentle stream or river flowing in the background.

- **Ambient Sounds**: The sound of leaves crunching underfoot and the occasional snap of twigs.

Setting and Environment

- **Location**: A realistic, dense forest with towering trees, a mix of deciduous and evergreen species.

- **Specific Features**:

 - A clear, meandering stream or small river running through the scene.

 - Moss-covered rocks and fallen logs adding visual interest.

 - Possibly a small clearing with wildflowers providing a focal point.

 - Occasional beams of sunlight breaking through the canopy, highlighting certain areas.

Does this detailed description align with your vision for the scene? If so, I'll proceed to create an

immersive scene description. If you need any adjustments, let me know!

User (q/Q to quit): this looks good!

================================== Ai Message ==================================

Tool Calls:

 ImmersiveSceneDescription (call_fAr6E6KSklo0gC8XtAi9O82M)

 Call ID: call_fAr6E6KSklo0gC8XtAi9O82M

 Args:

 detailed_description: The scene is set in a lush green forest, alive with natural beauty and

tranquility. The forest is dense with towering trees, a mix of deciduous and evergreen species, creating

a vibrant palette of greens. The foliage is rich and varied, with splashes of colorful flowers in reds,

yellows, and purples adding visual interest. The forest floor is covered with a thick carpet of fallen

leaves, twigs, and moss-covered rocks, all depicted with rich, detailed textures.

Soft, dappled sunlight filters through the tree canopy, casting a mix of light and shadow on the forest

floor. Occasional beams of suSoft, dappled sunlight filters through the tree canopy, casting a mix of

light and shadow on the forest floor. Occasional beams of sunlight break through, highlighting specific

areas and adding depth to the scene. The gentle sway of the trees and plants in the brSoft, dappled

sunlight filters through the tree canopy, casting a mix of light and shadow on the forest floor.

Occasional beams of sunlight break through, highlighting specific areas and adding depth to the scene.

The gentle sway of the trees and plants in the breunlight break through, highlighting specific areas and

adding depth to the scene. The gentle sway of the trees and plants in the breeze, along with light mist

or fog, enhances the immersive experience.

unlight break through, highlighting specific areas and adding depth to the scene. The gentle sway of the

trees and plants in the bunlight break through, highlighting specific areas and adding depth to the

scene. The gentle sway of the trees and plants in the breeze, along with light mist or fog, enhances the

immersive experience.

 breeze, along with light mist or fog, enhances the immersive experience.

The audio elements are carefully designed to complement the visual beauty. Gentle, ambient music with

natural instrumeThe audio elements are carefully designed to complement the visual beauty. Gentle,

ambient music with natunts like flutes and strings plays in the background, creating a serene

atmosphere. The forest is alive with the sounds of nature: rustling leaves as the wind moves through the

trees, diverse birdsong, distant deents like flutes and strings plays in the background, creating a

serene atmosphere. The forest is alive with the sounds of nature: rustling leaves as the wind moves

through the trees, diverse birdsong, distant deer calls, and the rustling of small critters. A clear,

21

meandering stream or small river flows through the scene, its gentle babbling adding to the sense of

tranquility. Additional ambient soundhe sounds of nature: rustling leacalls, ancalls, and the rustling

of small critters. A clear, meandering stream or small river flows through the scene, its gentle

babbling adding to the sense of tranquility. Additional ambient sounds include leaves crunching

underfoot and the occasional snap of twigs.

The setting is realistic, with specific features that make the forest come alive. A clear stream or

river runs through the scene, surrounded by moss-covered rocks and fallen logs. A small clearing with

wildflowers provides a focal point, and the occasional shafts of sunlight breaking through the canopy

highlight certain areas, adding to the overall magic of the forest environment.

================================= Tool Message =================================

Plan generated! [PLANNER OUTPUT]
================================== Ai Message ==================================

Tool Calls:

 ImmersiveInstructionPlan (call_i2a2eZSR7LN7KxadWlVR24IJ)

 Call ID: call_i2a2eZSR7LN7KxadWlVR24IJ

 Args:

 detailed_weather: Clear weather with a gentle breeze, enhancing the overall tranquility of the

forest.

 detailed_lighting: Soft, dappled sunlight filters through the tree canopy, casting a mix of light

and shadow on the forest floor. Occasional beams of sunlight break through, adding depth and

highlighting specific areas.

 detailed_geographic_terrain: The terrain is typical of a dense forest, with a thick carpet of fallen

leaves, twigs, and moss-covered rocks. There is a clear, meandering stream or small river running

through the scene, adding visual interest.

 terrain_texture: ['leaves', 'twigs', 'moss', 'rocks']

 flora_and_details: ['towering trees', 'deciduous trees', 'evergreen trees', 'colorful flowers',

'fallen logs', 'wildflowers']

 flora_density: ['dense', 'dense', 'dense', 'sparse', 'medium', 'sparse']

 detailed_audio_sounds_description: ['rustling leaves as the wind moves through the trees', 'diverse

birdsong', 'distant deer calls', 'rustling of small critters', 'gentle babbling of a stream or river',

'leaves crunching underfoot', 'occasional snap of twigs']

Example 2:

Please provide a short description of the scene you want to create.

User (q/Q to quit): i want to create a desert scene

================================== Ai Message ==================================

Great! Let's start by diving into some specifics.

What kind of visual elements are most important to you in this desert scene? Could you describe the

colors, lighting, and textures you envision?

User (q/Q to quit): the first thing i think of when i think of deserts is heat, bright sunlight and sand

everywhere

================================== Ai Message ==================================

Got it. Bright sunlight, heat, and lots of sand.

Now, let's talk about audio. What kind of background music or sound effects do you think will make this

desert scene more immersive?

22

User (q/Q to quit): hmm.. i think it would be windy there. maybe something related to that. what else

would make sense?

================================== Ai Message ==================================

Windy sounds are a great choice. In addition to that, we could include occasional distant animal sounds

like birds or insects, and perhaps some faint rustling of sand.

Does that sound good to you? And would you like any background music or voice-overs, or should the focus

be on ambient sounds only?

User (q/Q to quit): that sounds good. Maybe some subtle background music taking inspiration from the

movie 'The Mummy'

================================== Ai Message ==================================

Excellent choice with the music inspiration. Now, let's discuss the setting and environment in more

detail.

Where do you want this scene to take place? Is this a realistic desert, or something more fantastical?

Are there any specific features or atmospheres you want in this environment?

User (q/Q to quit): it is a realistic scene. maybe sand dunes, a few desert rocks. Probably desert

plants

================================== Ai Message ==================================

Perfect! To summarize:

- **Visual Elements**: Bright sunlight, heat, sand everywhere, sand dunes, desert rocks, and some desert

plants.

- **Audio Elements**: Windy sounds, occasional distant animal sounds (birds, insects), rustling of sand,

and subtle background music inspired by "The Mummy."

- **Environment**: Realistic desert setting with features such as sand dunes, a few desert rocks, and

desert plants.

Let's proceed to create a detailed and creative description of this immersive desert scene.

Tool Calls:

 ImmersiveSceneDescription (call_oXUL2IY9ERPtoMTWgABG1yod)

 Call ID: call_oXUL2IY9ERPtoMTWgABG1yod

 Args:

 detailed_description: The scene is set in a vast, realistic desert. The sun blazes brightly in a

cloudless sky, casting an intense, golden light over the landscape, creating an aura of blistering heat.

Sand stretches endlessly, with towering sand dunes shaped by the relentless wind, their surfaces marked

by intricate, rippling textures. Scattered around are a few rugged desert rocks, weathered by time and

the elements. Sparse vegetation breaks the monotony: hardy desert plants like cacti and small shrubs dot

the terrain, their shadows providing minimal contrast to the sun-drenched surroundings.

The audio landscape complements the visual elements perfectly. The sound of a constant, inescapable wind

sweeps across the scene, carrying with it the faint rustling of sand. Occasionally, distant chirps of

desert birds and the intermittent buzz of insects add a touch of life to the arid environment. Subtle

background music, reminiscent of the evocative score from 'The Mummy,' plays softly, enhancing the sense

of mystery and ancient allure without overpowering the ambient sounds. The overall atmosphere is one of

isolation, heat, and the rugged beauty of the desert.

================================= Tool Message =================================

Plan generated! [PLANNER OUTPUT]
================================== Ai Message ==================================

Tool Calls:

23

 ImmersiveInstructionPlan (call_VQmEag8nNSllkFWmFpmU2TEQ)

 Call ID: call_VQmEag8nNSllkFWmFpmU2TEQ

 Args:

 detailed_weather: Blazing sun in a cloudless sky, creating an intense heat

 detailed_lighting: Bright sunlight, casting a golden light over the landscape

 detailed_geographic_terrain: Vast desert with towering sand dunes and scattered desert rocks

 terrain_texture: ['sand']

 flora_and_details: ['cacti', 'small shrubs', 'desert rocks']

 flora_density: ['sparse', 'sparse', 'few']

 detailed_audio_sounds_description: ['constant wind sweeping across the scene', 'faint rustling of

sand', 'distant chirps of desert birds', 'intermittent buzz of insects', "subtle background music

reminiscent of 'The Mummy'"]

24

b. Weather System Generator:
The weather system generator oversees adjusting the volumetric properties of the scene in the

game engine. It specifically outputs the following values, along with a Boolean for rain/snow:
densityMultipliervalue, shapeScaleValue, shapeFactorvalue, erosionFactorValue, erosionScalevalue, earthCurvatureValue,

bottomAltitudeValue, altitudeRangeValue, windSpeedvalue, windOrientationValue, ambientLightProbeDimmerValue, sunLightDimmerValue,

scatteringTintValueColorR, scatteringTintValueColorG, scatteringTintValueColorB, densityCurveKeyFrameX1, densityCurveKeyFrameY1,

densityCurveKeyFrameX2, densityCurveKeyFrameY2, densityCurveKeyFrameX3, densityCurveKeyFrameY3

Prompt: “Blue skies with a few clouds” Prompt: “a scene from movie Home Alone”
Output: 0.05, 10.5, 0.75, 0.2, 15.0, 0.2, 1200,

2000, 15, 180, 0.8, 0.9, 70, 130, 255, 0.5, 0.5,

1.5, 1.0, 3.0, 0.5

Output: 0.66, 25.00, 0.55, 0.40, 15.00, 0.50,

1000.00, 4000.00, 50.00, 180.00, 0.30, 0.20,

200, 180, 255, 0.80, 0.90, 1.50, 1.20, 3.00, 1.00
Precipitation: False Precipitation: True (Snow)

Prompt: “Intense and scary climate” Prompt: “morning in San Francisco”
Output: 0.9, 25.0, 0.7, 0.5, 20.0, 0.2, 1500.0,

3500.0, 100.0, 180.0, 0.1, 0.2, 128, 0, 0, 0.5,

1.5, 2.0, 0.1, 2.0, 0.9

Output: 0.15, 10.00, 0.50, 0.20, 15.00, 0.30,

1200.00, 3000.00, 10.00, 90.00, 0.50, 0.80,

255, 223, 186, 0.20, 0.50, 1.00, 0.70, 3.00, 1.50
Precipitation: True (Rain) Precipitation: False

Prompt: “A scene set in Sunnyvale, CA” Prompt: “the calm before the storm”
Output: 0.02, 8.75, 0.45, 0.12, 15.00, 0.18,

1200.00, 3000.00, 20.00, 180.00, 0.70, 0.80,

255, 255, 255, 0.5, 1.0, 1.5, 0.5, 3.0, 2.0

Output: 0.25, 15.34, 0.70, 0.20, 18.40, 0.30,

1500.00, 3000.00, 80.50, 120.00, 0.60, 0.50,

200, 180, 220, 0.50, 0.80, 1.50, 0.70, 2.00, 0.90
Precipitation: False Precipitation: False

25

c. Lighting Functions:
The lighting functions agent oversees adjusting the lighting properties present in the scene. It

specifically outputs the following values, along with a Boolean for rain/snow:
angDia, flareSize, flareFalloff, flareTintColorR, flareTintColorG, flareTintColorB, lightIntensity, emissionColorR, emissionColorG,

emissionColorB, colorTemp, multiplier, shadowDimmer, x_rotation, y_rotation, z_rotation

Prompt: “Sunny afternoon” Prompt: “a beautiful sunrise”
Output: 2.0, 3.0, 10.0, 255, 165, 0, 13000,

255, 223, 191, 6000, 1.0, 0.5, 45, 180, 0

Output: 3.5, 8.0, 45.0, 255, 200, 150, 6500,

255, 150, 100, 3500, 2.5, 0.6, 15, 90, 0

Prompt: “a scene from the cyberpunk game” Prompt: “a scene at dusk”
Output: 3.0, 6.0, 45.0, 200, 50, 50, 5000, 255,

100, 100, 9000, 8.0, 0.7, 60, 180, 0

Output: 3.0, 6.0, 45.0, 255, 100, 100, 500,

255, 180, 120, 3000, 0.5, 0.5, 10.0, 180.0, 0.0

Prompt: “10pm in Norway during summer” Prompt: “10pm in Norway during winter”
Output: 1.5, 3.0, 45.0, 255, 100, 50, 2000,

255, 140, 60, 4000, 0.5, 0.3, 15, 330, 0

Output: 1.0, 2.0, 45.0, 255, 196, 122, 70, 255,

196, 122, 2000, 0.5, 0.8, 0, 270, 0

26

d. Terrain Generator:
The terrain generator agent outputs the gaussian-voronoi 2D arrays which are passed through 2

to 3 iterations of gaussian blur function and then converted to a grayscale heightmap. The

heightmap is parsed by the Unity game engine to generate the 3D terrains. In the results below,

the heightmap is shown on the left and the generated Unity scene on the right

Prompt: “a scene in the desert”

Prompt: “snowy mountain ranges”

27

e. Texture Generator

Prompt (from planner): “desert sand” Prompt (from planner): “snow”

Prompt (from planner): “green grass” Prompt (from planner): “rocky mountain”

28

f. Asset Chooser
The asset chooser agent understands the planner’s output regarding the assets that need to be

added to the scene and then looks at all the pre-defined assets available to it. Based on that it

chooses the assets that are relevant to the planner’s output and lists them out along with their

respective numbers/instances that need to be instantiated.

Conifer, Cypress, Bush_A, Bush_B, Grass_A, Grass_B, Grass_C, Grass_D

1000, 1000, 5000, 5000, 5000, 5000, 5000, 5000

BushDry_A, BushDry_B

500, 500

29

g. Audio Expert Team

Please refer to the results ppt file for the results generated by the audio generation agent.

Some of the outputs of the spatial audio functions and audio placements functions are

provided below, however without the video, they would lack context.

Spatial Audio Function:
It outputs the following audio source properties:
loop = is the audio source going to loop in the scene? (should be a boolean - only choose from 'true' or 'false');

maxDistance = (Logarithmic rolloff) MaxDistance is the distance a sound stops attenuating at. (float range 0 to 100.0);

minDistance = Within the Min distance the AudioSource will cease to grow louder in volume. (float range 0 to 2);

priority = sets the priority of the audio source (int range from 0 to 255, where 0 = high priority and 255 = low priority);

volume = The volume of the audio source (0.0 to 1.0);

spatialBlend = Sets how much this AudioSource is affected by 3D spatialisation calculations (attenuation, doppler etc). 0.0 makes the sound full 2D, 1.0

makes it full 3D;

pitch = The pitch of the audio source. (float range from -3 to 3)

dopplerLevel = Sets the Doppler scale for this AudioSource. (float range 0 to 5)

Audio description: “wind blowing in the desert”

Output: false, 50, 0.5, 128, 0.5, 1.0, 1, 1

Audio description: “rustling sounds of the sand”

Output: false, 50, 0.5, 128, 0.5, 1.0, 1, 1

Audio description: “background music”

Output (multiple outputs for multiple instantiations): false, 50, 0.5, 128, 0.5, 1.0, 1, 1

false, 50, 1, 100, 0.5, 1.0, 0, 1

false, 20, 0.5, 200, 0.6, 0.5, 0, 1

false, 50, 1, 100, 0.5, 0.7, 0, 1

Audio Placement Function:

It outputs the following properties of the spatial expert function:
(audio source index, "assign_child", parent object, localXoffset, localYoffset, localZoffset)

(audio source index, "place_next_to", target object, Xoffset, Yoffset, Zoffset)

(audio source index, "free", "free", Xoffset_wrt_user, Yoffset_wrt_user, Zoffset_wrt_user)

 0,assign_child,Rock_A_02_LOD04,0,0.5,0

1,assign_child,Rock_A_02_LOD02,0,0.5,0

2,place_next_to,BushDry_B_176,1,0,0

3,free,free,5,0.5,2

h. Spatial Expert Team

Given that the team was primarily implemented in Unity as functions, the outputs

are related to the 3D placements of objects in the virtual environment. As such,

30

only the Scene Analysis & Understanding function generated output used by other

agents. It outputs the following values: object name, distance to user, x_size, y_size, z_size

The following output is for a ‘desert scene’

View of the scene

Rock_A_02_LOD04,3.15568,0.2386215,0.3285345,0.1666722

Rock_A_02_LOD03,3.15568,0.2386215,0.3288367,0.1666722

Rock_A_02_LOD02,3.15568,0.2404813,0.3288367,0.1688944

Rock_A_02_LOD01,3.15568,0.2409847,0.3294596,0.1696592

Rock_A_02_LOD00,3.15568,0.2409847,0.3294596,0.1696754

Rock_A_02_LOD04,3.801896,0.2386215,0.3285345,0.1666722

Rock_A_02_LOD03,3.801896,0.2386215,0.3288367,0.1666722

Rock_A_02_LOD02,3.801896,0.2404813,0.3288367,0.1688944

Rock_A_02_LOD01,3.801896,0.2409847,0.3294596,0.1696592

Rock_A_02_LOD00,3.801896,0.2409847,0.3294596,0.1696754

Rock_A_02_LOD04,4.602651,0.2386215,0.3285345,0.1666722

Rock_A_02_LOD03,4.602651,0.2386215,0.3288367,0.1666722

Rock_A_02_LOD02,4.602651,0.2404813,0.3288367,0.1688944

Rock_A_02_LOD01,4.602651,0.2409847,0.3294596,0.1696592

Rock_A_02_LOD00,4.602651,0.2409847,0.3294596,0.1696754

Rock_A_02_LOD04,4.935704,0.2386215,0.3285345,0.1666722

Rock_A_02_LOD03,4.935704,0.2386215,0.3288367,0.1666722

Rock_A_02_LOD02,4.935704,0.2404813,0.3288367,0.1688944

Rock_A_02_LOD01,4.935704,0.2409847,0.3294596,0.1696592

Rock_A_02_LOD00,4.935704,0.2409847,0.3294596,0.1696754

Rock_A_02_LOD04,6.2509,0.2386215,0.3285345,0.1666722

Rock_A_02_LOD03,6.2509,0.2386215,0.3288367,0.1666722

Rock_A_02_LOD02,6.2509,0.2404813,0.3288367,0.1688944

Rock_A_02_LOD01,6.2509,0.2409847,0.3294596,0.1696592

Rock_A_02_LOD00,6.2509,0.2409847,0.3294596,0.1696754

BushDry_A_123,7.21372,0.2745735,0.3036128,0.2198444

BushDry_A_275,7.352441,0.2745735,0.3036128,0.2198444

BushDry_B_216,9.327816,0.3596541,0.332011,0.3218468

31

BushDry_A_279,9.98339,0.2745735,0.3036128,0.2198444

Rock_A_02_LOD04,10.18525,0.2386215,0.3285345,0.1666722

32

References

[1] “Applied Sciences | Free Full-Text | Translating Words to Worlds: Zero-Shot Synthesis of

3D Terrain from Textual Descriptions Using Large Language Models.” Accessed: Aug. 08,

2024. [Online]. Available: https://www.mdpi.com/2076-3417/14/8/3257

[2] F. De La Torre, C. M. Fang, H. Huang, A. Banburski-Fahey, J. Amores Fernandez, and J.

Lanier, “LLMR: Real-time Prompting of Interactive Worlds using Large Language Models,”

in Proceedings of the CHI Conference on Human Factors in Computing Systems, in CHI ’24.

New York, NY, USA: Association for Computing Machinery, May 2024, pp. 1–22. doi:

10.1145/3613904.3642579.

