
SUPPLEMENTARY MATERIAL FOR “UH-PCC: UNIFIED OCTREE AND FEATURE
CODING FOR HIERARCHICAL POINT CLOUD GEOMETRY COMPRESSION”

1. INTRODUCTION

In this supplementary material, we provide more details
stochastic training strategy used for training the proposed
unified model, and some additional details about the datasets
used for experiments.

2. LEVELWISE STOCHASTIC TRAINING

Since our proposed model is unified for both Octree Cod-
ing and Feature Coding, a special mechanism is applied dur-
ing training. As pointed out in Sec. 2 in the main text, our
method breaks the dependency between levels in terms of fea-
ture extraction (while maintaining the dependency in terms of
coding). A motivation for this design is to enable the train-
ing to be performed in a level-wise manner rather than fully
end-to-end, so as to reduce computational cost. Additionally,
since our model is unified between Octree Coding and Fea-
ture Coding in terms of network parameters (majority of the
parameters) and can seamlessly switch between inter and in-
tra modes with the proposed Style Control technique, we can
randomly switch between four coding configurations during
training: intra Octree, intra Feature, inter Octree, and inter
Feature. The ratio of our network getting trained in either
configuration can be controlled by user-specified parameters.

To avoid our network getting stuck in local minimas that
lead to poor inference performance, we employ a two-stage
training procedure with a special schedule for rate-distortion
trade-off parameter λ. In the first stage, we use a fixed low
value λ which incurs a high bitrate during training but can
achieve good reconstruction performance, i.e., low distortion.
This first stage lasts a few epochs, after which we use a normal
schedule for λ where we randomly pick the value for λ within
a specified range.

For the training of Octree coding the training loss consists
of a binary cross-entropy loss (between the predicted prob-
abilities and the ground truth occupancies) used for learn-
ing the occupancy probabilities and the rate loss of the fea-
tures which is the bitrate estimated by the entropy bottleneck
layer. The Feature Coding is trained using a rate distortion
loss L = LD + λLR, where the rate is again the bitrate of
the feature estimated by the entropy bottleneck layer, and the
distortion is computed using the binary cross-entropy loss as
the Feature Coding produces a lossy utilizing the learned oc-

Table 1: Training datasets used.

Class Train (Sequence) Name Fr. Prc.
DS Head 00039 vox12 1 12

Frog 00067 vox12 1 12
Egyptian mask vox12 1 12
ULB Unicorn vox13 1 13

DS RWTT Train Set 406 Float
DD Queen 250 10

8i VFB – Loot 300 10
8i VFB – Red and Black 300 10
8i VFB – Soldier 300 10
8i VFB – Long dress 300 10

SD KITTI (00-10) 23201 18

Table 2: Test datasets used.

Class Test (Sequence) Name Fr. Prc.
DS Facade 00009 vox12 1 12

House without roof 00057 vox12 1 12
Arco Valentino Dense vox12 1 12
Statue Klimt vox12 1 12
Shiva 00035 vox12 1 12

DS RWTT vishnu 156 vox10 1 10
RWTT foxstatue 211 vox10 1 10
RWTT tomb 059 vox10 1 10

DD Exercise vox10 300 10
Model vox10 300 10
Dancer vox11 300 11
Basketball player vox11 300 11
Thaidancer viewdep vox12 300 12

SD KITTI (11-21) 3300 18

cupancy probabilities.

3. DATASET DETAILS

The datasets for our experimental evaluation consist of three
main categories: Dense Static, Dense Dynamic and Sparse
Dynamic, and follows the experimental guidelines outlined
in the MPEG AI-PCC CfP [1]. The training set in the Dense
Static category consists of a subset of the static point clouds
from MPEG G-PCC CTC and some subset of static 3D tex-
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Fig. 1: R-D performance on selected point clouds measured in D1- (top row) and D2- (bottom row) PSNRs. UH-PCC exhibits
competitive performance among all the methods. Note that the name “house without roof 00057 vox12” is abbreviated to
“house” for brevity.

tured models in the Real World Textured Things (RWTT)
dataset [2] with permittive licenses. The corresponding test
sets consist of another subset of the static point clouds from
MPEG G-PCC CTC and three static 3D textured models in
the RWTT dataset [1].

In the Dense Dynamic category, the training set is com-
posed of 8iVFB dynamic point cloud sequences and the
Queen sequence, while the test set consists of dynamic point
cloud sequences from the V-PCC CTC. Finally, the training
and testing data for Sparse Dynamic are the training and test-
ing splits from the well-known spinning-LiDAR KITTI [3]
dataset. Some additional details about each dataset category
are provided in Supplementary. We provide some more de-
tails in Tab. 1 and Tab. 2 about the training and test datasets,
respectively. These details include information like Class,
number of frames (Fr.), and geometry precision (Prc.). For
RWTT train set, 406 meshes among 568 were selected before
processing them to point cloud training set. These mesh ver-
tices are originally available in floating-point values, hence,
quantization was performed on the vertices before point-
sampling on top of the meshes. For KITTI train set we use
sequences 00 to 10 with all their frames, while for the KITTI
test set we use sequences 11 to 21 with the first 300 frames
from each test sequence.

4. ADDITIONAL RD-CURVES

Additional RD curves are also provided here for comparison
with state-of-the-art methods, further illustrating the trends
summarized in Table 1 of the main paper. Our method con-
sistently outperforms or matches existing approaches in D1-
PSNR across all categories. For D2-PSNR, we achieve clear
gains in the dense dynamic category, which benefits from our

efficient inter-frame modeling. However, in dense static and
sparse dynamic categories, D2-PSNR lags slightly—likely
due to our design trade-offs that prioritize D1 accuracy and
bitrate efficiency. These curves highlight our method’s bal-
anced and competitive rate-distortion behavior.
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