Appendix
A. DETAILED EXPERIMENTAL SETUPS

A.l. Detailed Setup for Sec.d.1]

Data Partitioning and Evaluation. To experiment under
CI-FFREEDA condition, we employ the following data par-
titioning strategy. Initially, we select a source domain and
randomly sample instances for each label to create an im-
balanced source dataset, representing approximately 60% of
the entire dataset. From this subset, 80% is allocated to the
training set, while the remaining 20% is designated as the
validation set. Subsequently, we select one target domain. For
the test set, we allocate an equal number of samples for each
label, comprising 20% of the total dataset. The remaining
samples are divided using Dirichlet sampling method, com-
monly employed in non-IID federated learning, to ensure class
imbalance and heterogeneous distributions across clients. The
samples assigned to each client are stratified to preserve the
label distribution, with 80% allocated to the training set and
20% to the validation set.

In many existing domain adaptation studies that do not
incorporate federated learning, data partitioning during target
adaptation is not conducted, and models are typically evaluated
using metrics derived from the training set after a fixed number
of epochs. Contrary to their approach, our objective is to
obtain a unified global model adapted to the target domain
while avoiding overfitting to the training data held by each
client. Consequently, we maintain the best global model on
the server based on the evaluations conducted by each client
using their validation set and measure MAR of the final global
model using the test set from the administrator’s perspective.
Since the test set is balanced, MAR is equivalent to accuracy.

In the source training phase, three training/validation sets
are constructed with different imbalance ratios. For each
source imbalance ratio, experiments are conducted three times
with different seed values, and the results of these nine runs
are averaged. In the target adaptation phase, for each of the
three source imbalance ratios, three different target imbalance
ratios (representing imbalance distribution among clients) are
applied, and the results from these nine runs are averaged.
Implementation Details. The batch size is 64 and the learning
rate is set to 0.01 for OH and 0.001 for VisDA. The learning
rate of backbone during the training of ResNet is set to one-
tenth of the default rate. The feature dimension in bottleneck
layer is set to 256. In ICPR, RandAugment [1]] is used to
generate augmented images. The number of augmentations
to be given is set to 2 and the upper limit of augmentation
magnitude is set to 9. The degree of non-IID-ness of the
data distribution, as determined by the Dirichlet sampling, is
controlled by the parameter . Generally, non-IID-ness is
more pronounced when o < 1, resulting in one label being
distributed preferentially to biased clients. In our experiments,
ais set to 0.5.

In experiments using ViT-S and ViT-B, the output of train-
ing samples processed by the ViT is stored in the feature bank
for training, except during ICPR source training, target adap-
tation, and ISFDA target adaptation. Consequently, the data
augmentation of random flip and random crop commonly em-
ployed in existing methods are not applied during training.

A.2. Detailed Setup for Sec.

In the further experiments in Sec.[5.1] three domain dataset
in Office-Home; Clipart, Product, Real-World are split into
three subset for source-set, target-set, and evaluation-set. In
all scenarios, the evaluation-set is balanced. Meanwhile, the
source-set is sampled with balanced label distribution in the
source balance scenario (sb), whereas random label distribu-
tion is applied in the source imbalance scenario (si). The
target-set is further distributed among three clients, maintain-
ing the label distribution in the target balance scenario (¢b) and
applied a Dirichlet distribution in the target imbalance scenario
(). This leads to the following four scenarios: source balance
to target balance (sbtb), source balance to target imbalance
(sbti), source imbalance to target balance (sitb), and source im-
balance to target imbalance (siti). In Sec. only the results
of sbtb and siti are presented. Note that in those experiments,
the number of samples used for training in both the source and
target domains is approximately half of that in Sec.[d] thus a
direct comparison is not possible.

A.3. Detailed Setup for Sec.

In the experiments described herein, SHOT is employed as the
base algorithm for SFDA. When integrated with FedProx, the
regularization term is added to the existing SHOT loss function.
The regularization factor is tuned from {1.0, 0.1, 0.01, 0.001}.
A value of 0.001 is selected in VisDA with ResNet-101, while
0.1 is selected for the other settings. For FedETF, training is
conducted using a dedicated bottleneck component and an ETF
classifier. Following the official implementation, we replace
the loss function in the self-training term with a balanced
softmax loss, where the cross-entropy is corrected using the
label distribution. Other implementation details are same as
Sec.

B. COMPLEMENTARY RESULTS

B.1. Complementary Results of Sec.[d.2]

The results of adaptation experiments for all domain patterns
in OH are presented in Fig.[5] In each domain-specific panel,
different methods are represented by different colors. Across
nearly all methods, the accuracy follows the order: ViT-B (B),
ViT-S (S), ResNet-50 (R). The accuracy among all methods is
largely competitive, with no method significantly outperform-
ing the others beyond the range of the error bars.
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Fig. 5: The whole results of federated target adaptation with OH and ResNet-50 (R), DINOv2 ViT-S (S), and ViT-B (B) conducted in Sec.El
Panels and Colors indicate different source-target domain pairs and SFDA methods, respectively. Each plot shows the average over 9 runs,
comprised of 3 different source imbalance ratios and 3 different target imbalance ratio. Error bars represent the maximum and minimum values

from these 9 runs.

B.2. Complementary Results of Sec.[5.1]

The whole results with TL and DA settings under sbtb, sbti,
sith, and siti scenarios are shown in Table[6} The source accu-
racy is averaged across three domains, three source sampling
seeds, and three execution seeds, totaling 27 runs. The target
accuracy is averaged across three domain pairs, three source
sampling seeds, and three target distribution seeds in TL set-
ting. In DA setting, it is averaged over six source-target pairs,
three source sampling seeds, and three target distribution seeds,
totaling 27 runs for TL and 54 runs for DA.

B.3. Complementary Results of Sec.[5.2]

Fig. [0 illustrates the error bars with different seeds for OH
dataset, as indicated Table [5] Fig.[7]is the same figure for
VisDA.

C. COMPUTATIONAL AND COMMUNICATION
COSTS

The proposed method in this study reduces computational
resource consumption during backpropagation by freezing the
VEM component. Table [7]shows the number of FLOPs and
the size of models that must be transferred between the server
and the client. FLOPs are computed using calﬂopsﬂ Since

3https://github.com/MrY xJ/calculate-flops.pytorch:

batch normalization is used, the number of batch is calculated
as 2 and the result is halved to obtain the FLOPs per image.
Additionally, for ResNet training, the computational cost of
the backward pass is assumed to be twice that of the forward
pass. Model sizes are based on the actual saved size using the
standard method of PyTorch.

In the case of ResNet fine-tuning, training requires approx-
imately three times the computational cost of a single forward
pass. The resulting trained model, which is roughly 100 MB
in size, must be transmitted. In contrast, when using frozen
VFMs, the computational cost for ViT-S is reduced by half
compared to ResNet-50. Moreover, only the bottleneck and
classifier components, which together total less than 1 MB,
need to be transmitted to the server. significantly improving
communication efficiency. Furthermore, if the outputs of the
frozen VFMs is stored in a feature bank during the initial train-
ing phase and the backbone computation is skipped thereafter,
enabling training only of the bottleneck and classifier (Frozen
VFMs with backbone skipped), it is possible to entirely elimi-
nate backbone computation during training.
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Table 6: The whole results conducted in Sec[5.1]under transfer learn-
ing (TL) and domain adaptation (DA) settings considering domain
gaps and label distribution gaps. The Scenario column represents the
label distribution of the source (s) and target (¢), balanced (b) and im-
balanced (i). The decline in accuracy after the transfer or adaptation

to the target (S2T diff.) is also presented.

Model Scenario | Source Target S2T

acc. acc. diff.

sbib 826 820 -06

sbti 826 810 -1.6

ResNet-50 787 784 03

siti 787 776 -1l

sbtb 8§74 864 1.0

. sbti 874 860 -1.4

TL | VIS sith 847 841 0.6

siti 847 834  -1.3

sbib 899  90.1 +02

. sbti 899 897 02

VIiT-B sith 888 879  -09

siti 888 872  -1.6

sbtb 826 650 -17.6

sbti 826 640 -18.6

ResNet-50 787 620 -167

siti 787 608 -17.9

sbtb 874 768 -10.6

. sbti 874 742  -132

DA | VITS sith 847 731 -1L6

siti 847 714  -13.3

sbib 899 826 I3

. sbti 899 808 9.1

VIT-B sith 888 794 94

siti 888 781 -10.7

Table 7
Method Model ‘ FLOPs Model Size

. . ResNet-50 | 246G 94 MB
ResNet Fine-tuning — p o Ne-101 | 469G 169 MB
ViT-S 110G <I1MB
Frozen VEMs VILB | 439G < 1MB
Frozen VEMs ViT-S 06IM <1MB
with backbone skipped ViT-B 1.20M < 1MB

ResNet-50
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Fig. 6: The comparison among three different federated learning
method, FedAvg (A), FedProx (P), and FedETF (E), with OH. Note
that in this figure, colors indicate different source-target pairs. Each
plot shows the average over nine runs, comprised of three different
source imbalance ratios and three different target imbalance ratio.
Error bars represent the maximum and minimum values from these
nine runs.
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Fig. 7: The comparison among three different federated learning
method, FedAvg, FedProx, and FedETF, with VisDA. Details of the
plot are identical to those in Fig.
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