
Appendix
A. DETAILED EXPERIMENTAL SETUPS

A.1. Detailed Setup for Sec. 4.1

Data Partitioning and Evaluation. To experiment under
CI-FFREEDA condition, we employ the following data par-
titioning strategy. Initially, we select a source domain and
randomly sample instances for each label to create an im-
balanced source dataset, representing approximately 60% of
the entire dataset. From this subset, 80% is allocated to the
training set, while the remaining 20% is designated as the
validation set. Subsequently, we select one target domain. For
the test set, we allocate an equal number of samples for each
label, comprising 20% of the total dataset. The remaining
samples are divided using Dirichlet sampling method, com-
monly employed in non-IID federated learning, to ensure class
imbalance and heterogeneous distributions across clients. The
samples assigned to each client are stratified to preserve the
label distribution, with 80% allocated to the training set and
20% to the validation set.

In many existing domain adaptation studies that do not
incorporate federated learning, data partitioning during target
adaptation is not conducted, and models are typically evaluated
using metrics derived from the training set after a fixed number
of epochs. Contrary to their approach, our objective is to
obtain a unified global model adapted to the target domain
while avoiding overfitting to the training data held by each
client. Consequently, we maintain the best global model on
the server based on the evaluations conducted by each client
using their validation set and measure MAR of the final global
model using the test set from the administrator’s perspective.
Since the test set is balanced, MAR is equivalent to accuracy.

In the source training phase, three training/validation sets
are constructed with different imbalance ratios. For each
source imbalance ratio, experiments are conducted three times
with different seed values, and the results of these nine runs
are averaged. In the target adaptation phase, for each of the
three source imbalance ratios, three different target imbalance
ratios (representing imbalance distribution among clients) are
applied, and the results from these nine runs are averaged.
Implementation Details. We adopt mini-batch SGD with
momentum 0.9. The batch size is 64 and the learning rate is
set to 0.01 for OH and 0.001 for VisDA. The learning rate of
backbone during the training of ResNet is set to one-tenth of
the default rate. The feature dimension in bottleneck layer is
set to 256. In ICPR, RandAugment [1] is used to generate
augmented images. The number of augmentations to be given
is set to 2 and the upper limit of augmentation magnitude is set
to 9. The degree of non-IID-ness of the data distribution, as
determined by the Dirichlet sampling, is controlled by the pa-
rameter α. Generally, non-IID-ness is more pronounced when
α < 1, resulting in one label being distributed preferentially
to biased clients. In our experiments, α is set to 0.5.

In experiments using ViT-S and ViT-B, the output of train-
ing samples processed by the ViT is stored in the feature bank
for training, except during ICPR source training, ICPR target
adaptation, and ISFDA target adaptation. Consequently, the
data augmentation of random flip and random crop commonly
employed in existing methods are not applied during training.

A.2. Detailed Setup for Sec. 5.1

In the further experiments in Sec. 5.1, three domain dataset
in Office-Home; Clipart, Product, Real-World are split into
three subset for source-set, target-set, and evaluation-set. In
all scenarios, the evaluation-set is balanced. Meanwhile, the
source-set is sampled with balanced label distribution in the
source balance scenario (sb), whereas random label distribu-
tion is applied in the source imbalance scenario (si). The
target-set is further distributed among three clients, maintain-
ing the label distribution in the target balance scenario (tb) and
applied a Dirichlet distribution in the target imbalance scenario
(ti). This leads to the following four scenarios: source balance
to target balance (sbtb), source balance to target imbalance
(sbti), source imbalance to target balance (sitb), and source im-
balance to target imbalance (siti). In Sec. 5.1, only the results
of sbtb and siti are presented. Note that in those experiments,
the number of samples used for training in both the source and
target domains is approximately half of that in Sec. 4, thus a
direct comparison is not possible.

A.3. Detailed Setup for Sec. 5.2

In the experiments described herein, SHOT is employed as the
base algorithm for SFDA. When integrated with FedProx, the
regularization term is added to the existing SHOT loss function.
The regularization factor is tuned from {1.0, 0.1, 0.01, 0.001}.
A value of 0.001 is selected in VisDA with ResNet-101, while
0.1 is selected for the other settings. For FedETF, training is
conducted using a dedicated bottleneck component and an ETF
classifier. Following the official implementation, we replace
the loss function in the self-training term with a balanced
softmax loss, where the cross-entropy is corrected using the
label distribution. Other implementation details are same as
Sec. 4.

B. COMPLEMENTARY RESULTS

B.1. Complementary Results of Sec. 4.2

The results of adaptation experiments for all domain patterns
in OH are presented in Fig. 5. In each domain-specific panel,
different methods are represented by different colors. “Source”
refers to the baseline evaluation where the model, trained
exclusively on the source domain, is directly applied to the
target domain without any adaptation. “Local” represents the
average performance across all clients, where each client inde-
pendently trains its model without federated learning. “Hard”



denotes a basic pseudo-labeling strategy: during local client
training, the outputs of the current model are converted into a
one-hot format and used as pseudo-labels. Across nearly all
methods, the accuracy follows the order: ViT-B (B), ViT-S (S),
ResNet-50 (R). The accuracy among all methods is largely
competitive, with no method significantly outperforming the
others beyond the range of the error bars.

B.2. Complementary Results of Sec. 5.1

The whole results with TL and DA settings under sbtb, sbti,
sitb, and siti scenarios are shown in Table 6. The source accu-
racy is averaged across three domains, three source sampling
seeds, and three execution seeds, totaling 27 runs. The target
accuracy is averaged across three domain pairs, three source
sampling seeds, and three target distribution seeds in TL set-
ting. In DA setting, it is averaged over six source-target pairs,
three source sampling seeds, and three target distribution seeds,
totaling 27 runs for TL and 54 runs for DA.

Table 6: The whole results conducted in Sec.5.1 under transfer learn-
ing (TL) and domain adaptation (DA) settings considering domain
gaps and label distribution gaps. The Scenario column represents the
label distribution of the source (s) and target (t), balanced (b) and im-
balanced (i). The decline in accuracy after the transfer or adaptation
to the target (S2T diff.) is also presented.

Model Scenario Source Target S2T
acc. acc. diff.

TL

sbtb 82.6 82.0 -0.6

ResNet-50 sbti 82.6 81.0 -1.6
sitb 78.7 78.4 -0.3
siti 78.7 77.6 -1.1
sbtb 87.4 86.4 -1.0

ViT-S sbti 87.4 86.0 -1.4
sitb 84.7 84.1 -0.6
siti 84.7 83.4 -1.3
sbtb 89.9 90.1 +0.2

ViT-B sbti 89.9 89.7 -0.2
sitb 88.8 87.9 -0.9
siti 88.8 87.2 -1.6

DA

sbtb 82.6 65.0 -17.6

ResNet-50 sbti 82.6 64.0 -18.6
sitb 78.7 62.0 -16.7
siti 78.7 60.8 -17.9
sbtb 87.4 76.8 -10.6

ViT-S sbti 87.4 74.2 -13.2
sitb 84.7 73.1 -11.6
siti 84.7 71.4 -13.3
sbtb 89.9 82.6 -7.3

ViT-B sbti 89.9 80.8 -9.1
sitb 88.8 79.4 -9.4
siti 88.8 78.1 -10.7

B.3. Complementary Results of Sec. 5.2

Fig. 6 illustrates the error bars with different seeds for OH
dataset, as indicated Table 5. Fig. 7 is the same figure for
VisDA.

C. OTHER MODELS AND BACKBONE FINE-TUNING

In edge environments, such as a single client participating in
federated learning, models like ViT-S/14 (21M parameters)
and ViT-B/14 (86M), mainly used in this study, may not be
sufficiently lightweight for efficient processing. To investi-
gate more resource-efficient alternatives, we include in our
evaluation lighter models with available pretrained weights:
LightViT-Tiny [2] (9.4M), TinyViT-5M [3] (5.4M), and the
image encoder ViT-8M/16 of TinyCLIP [4] (8M). The results
are shown for cases where these models are used as frozen
backbones, as well as when the pretrained weights are used
for initialization and the entire backbone is fine-tuned. Fur-
thermore, the results also include the performance of DINOv2
when the backbone is fine-tuned, as well as the results us-
ing the latest models released by Meta: DINOv3 [5], ViT-
S/16 (21M), ViT-S+/16 (28M), and ViT-B/16 (86M), used as
frozen backbones. For each setting, we conducted a parameter
search over learning rates from {0.1, 0.01, 0.001}, weight
decay values {0.01, 0.001, 0.0001}, and backbone learning
rate ratios during fine-tuning {0.1, 0.01, 0.001, 0.0001}. The
best-performing results from these configurations with SHOT
and FedAvg are reported.
Source Training Accuracy. The training results on the source
domain show that TinyViT achieves comparable to DINOv2
ViT-S among lightweight models in OH (Fig. 8), while both
LightViT and TinyViT demonstrate high accuracy on VisDA
(Fig. 9). When fine-tuning lightweight models, the source
accuracy remains nearly the same as in the frozen case on OH,
whereas higher accuracy is observed in VisDA.
Target Adaptation Accuracy. After target adaptation, the
frozen TinyViT achieves performance nearly equivalent to DI-
NOv2 ViT-S in OH (Fig. 10) and slightly lower in VisDA
(Fig. 11), yet in both cases it outperforms the fine-tuned
ResNet. On the other hand, fine-tuning lightweight models
results in decreased accuracy, suggesting that more sensitive
adjustment may be necessary. Fine-tuning DINOv2 yields
accuracy comparable to or slightly better than its frozen coun-
terpart, but considering computational costs, using the frozen
backbone proves to be advantageous.

D. COMPUTATIONAL AND COMMUNICATION
COSTS

The proposed method in this study reduces computational
resource consumption during backpropagation by freezing the
VFM component. Table 7 shows the number of FLOPs and
the size of models that must be transferred between the server
and the client. FLOPs are computed using the calflops3 library.
Since batch normalization is used, the number of batch is
calculated as 2 and the result is halved to obtain the FLOPs
per image. Additionally, when fine-tuning, the computational
cost of the backward pass is assumed to be twice that of the

3https://github.com/MrYxJ/calculate-flops.pytorch

https://github.com/MrYxJ/calculate-flops.pytorch
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Fig. 5: The whole results of federated target adaptation with OH and ResNet-50 (R), DINOv2 ViT-S (S), and ViT-B (B) conducted in Sec. 4.
Panels and colors indicate different source-target domain pairs and SFDA methods, respectively. Each plot shows the average over nine runs,
comprised of three different source imbalance ratios and three different target imbalance ratio. Error bars represent the maximum and minimum
values from these nine runs.

forward pass. Model sizes are based on the actual saved size
using the standard method of PyTorch.

Table 7: FLOPs and model sizes for each model and training strategy.

Method Model FLOPs Model Size

Fine-tuning ResNet-50 24.6 G 94 MB
ResNet-101 46.9 G 169 MB

Frozen VFMs ViT-S 11.0 G < 1 MB
ViT-B 43.9 G < 1 MB

Frozen VFMs ViT-S 0.61 M < 1 MB
with backbone skipped ViT-B 1.20 M < 1 MB

In the case of ResNet fine-tuning, training requires approx-
imately three times the computational cost of a single forward
pass. The resulting trained model, which is roughly 100 MB
in size, must be transmitted. In contrast, when using frozen
VFMs, the computational cost for ViT-S is reduced by half
compared to ResNet-50. Moreover, only the bottleneck and
classifier components, which together total less than 1 MB,
need to be transmitted to the server, significantly improving
communication efficiency. Furthermore, if the outputs of the
frozen VFMs is stored in a feature bank during the initial train-
ing phase and the backbone computation is skipped thereafter,
enabling training only of the bottleneck and classifier (Frozen
VFMs with backbone skipped), it is possible to entirely elimi-
nate backbone computation during training.
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Fig. 6: The comparison among three different federated learning
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Fig. 8: Accuracy of the source domain on the OH dataset with various models. Blue bars indicate results obtained using a frozen backbone,
while orange bars, denoted by an asterisk (*) following the model name, represent results with a fine-tuned backbone. Hatched bars correspond
to the original models discussed in this paper. Each plot is the average over nine runs, comprised of three different source imbalance ratios and
three execution seeds for each source sampling. Error bars represent the maximum and minimum values of nine runs.
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Fig. 9: Accuracy of the source domain on the VisDA dataset with
various models. Details are same as Fig. 8.
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Fig. 10: The whole results of federated target adaptation on the OH dataset with various models. Details of the bars are same as Fig. 8. Each
plot shows the average over nine runs, comprised of three different source imbalance ratios and three different target imbalance ratio. Error bars
represent the maximum and minimum values from these nine runs.
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Fig. 11: Results of federated target adaptation on the VisDA dataset
with various models. Details are same as Fig. 10.
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