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target domain without access to the source data. Shuffle PatchMix (SPM) Augmentation » Confidence—Margin Reweighting strategy alone improves over
* Challenges: AdaContrast baseline (DomainNet +1.3 %, PACS +2.4 %).
Existing SFDA methods depend on the quality of pseudo-labels, and b it \ e SPM with patch overlap reduces artifacts and adds further gains.
noisy pseudo-labels negatively impact adaptation performance. L peta(@D) o, G e Combining all: best overall (DomainNet 71.1 % (1*3.3% over

Key Contributions AdaContrast baseline), PACS 86.7 % (17.3% over baseline)).

1. Shuffle PatchMix (SPM), an intra-image patch shuffle-and-blend
augmentation technique that enriches target-domain data with
diverse and challenging transformations. x Random
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2. Confidence—Margin Reweighting strategy that prioritizes reliable
pseudo-labels using both the top-1 probability and the margin
between the top-1 and top-2 classes.

3. Together they deliver state-of-the-art performance on PACS,
VisDA-C, and DomainNet-126, especially on smaller datasets prone
to overfitting and label noise.
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GitHub Code, Paper and Demo

Gitial Augmentations:\

Random Resized Crop
Random Horizontal Flip
Color Jitter

Random Grayscale

Post Augmentations:

\Gaussian Filter j
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