SHUFFLE PATCHMIX AUGMENTATION WITH CONFIDENCE-MARGIN WEIGHTED PSEUDO-LABELS FOR ENHANCED SOURCE-FREE DOMAIN ADAPTATION

Prasanna Reddy Pulakurthi¹, Majid Rabbani¹, Jamison Heard¹, Sohail Dianat¹, Celso M. de Melo², and Raghuveer Rao²

¹ Rochester Institute of Technology, Rochester, NY, USA ² DEVCOM Army Research Laboratory, Adelphi, MD, USA

Introduction

Motivation:

Domain shift occurs when the data distribution in the training domain differs from that in the testing domain, leading to degraded model performance.

[1] Peng, Xingchao, et al. "Syn2real: A new benchmark for synthetic-to-real visual domain adaptation." arXiv:1806.09755 (2018).

• Source-Free Domain Adaptation (SFDA):

We tackle SFDA, where a pre-trained source model adapts to a target domain without access to the source data.

Challenges:

Existing SFDA methods depend on the quality of pseudo-labels, and noisy pseudo-labels negatively impact adaptation performance.

Key Contributions

- 1. Shuffle PatchMix (SPM), an intra-image patch shuffle-and-blend augmentation technique that enriches target-domain data with diverse and challenging transformations.
- 2. Confidence–Margin Reweighting strategy that prioritizes reliable pseudo-labels using both the top-1 probability and the margin between the top-1 and top-2 classes.
- 3. Together they deliver state-of-the-art performance on PACS, VisDA-C, and DomainNet-126, especially on smaller datasets prone to overfitting and label noise.

ICIP 2025 • ANCHORAGE, ALASKA • SEP 2025

Method Overview

- Weak Augmentation \rightarrow Features \rightarrow Nearest-Neighbor soft voting \rightarrow Refined Pseudo-Label \hat{y} and Weight w;
- Strong Augmentation (SPM) → Contrastive Queue; Train with Weighted Cross-Entropy Loss, Diversity Loss, and Contrastive Loss.

Core Equations

Pseudo-label weight: $w = p_{top1} \cdot \Delta \cdot \exp(\Delta)$,

where $\Delta = p_{top1} - p_{top2}$.

Total loss: $L = L_{ce}$ (weighted) + L_{ctr} + L_{div} .

Shuffle PatchMix (SPM) Augmentation

Results

- PACS (ResNet-18): Single-target avg **86.7**% (**个7.3**% over AdaContrast baseline); Multi-target avg **82.6**% (**个7.2**%).
- VisDA-C (ResNet-101): **89.4**% avg (best overall; best/2nd-best in 8/12 classes).
- DomainNet-126 (ResNet-50): **71.1**% avg (**1.2.8** % over prior SOTA).
- Ablations: each component (SPM, overlap, reweighting) contributes; all combined give the best results.

16 Patches

Ablations (Summary)

- Confidence–Margin Reweighting strategy alone improves over AdaContrast baseline (DomainNet **+1.3** %, PACS **+2.4** %).
- SPM with patch overlap reduces artifacts and adds further gains.
- Combining all: best overall (DomainNet **71.1** % (个**3.3**% over AdaContrast baseline), PACS **86.7** % (个**7.3**% over baseline)).

GitHub Code, Paper and Demo

This research was supported by DEVCOM Army Research Laboratory under contract W911QX-21-D-0001.