
DETECTS: DEEP CLUSTERING OF TEMPORAL SKELETONS FOR GRAPH-BASED
SEGMENTATION

Vipul Baghel Bikash Kumar Badatya Ravi Hegde
Indian Institute of Technology Gandhinagar, Gujarat, India.

1. METHODOLOGY

1.1. Overview

Recent advances in spatio-temporal graph learning and clus-
tering provide conceptual foundations for our approach. The
Deep Temporal Graph Clustering (TGC) framework intro-
duces deep clustering tailored to dynamic interaction graphs
by integrating temporal batch-processing with assignment
distribution and reconstruction modules, highlighting the po-
tential of clustering in temporal graph domains [1]. In the
context of skeleton-based modeling, DG-STGCN proposes
dynamic affinity learning and group-wise temporal convolu-
tion to model changing joint dependencies and action dynam-
ics flexibly [2]. Similarly, the Multi-Scale Spatial Temporal
GCN (MST-GCN) employs hierarchical spatial and tempo-
ral graph convolutions to capture long-range dependencies,
enriching feature representations for skeleton-based action
recognition [3].

These works collectively suggest that (i) temporal graph
clustering is feasible within deep networks, (ii) dynamic
graph structure enhances adaptability to complex motion,
and (iii) multi-scale design supports modeling of both fine
and coarse motion patterns. Motivated by these insights, we
frame temporal action localization as a **spatial-temporal
graph separation problem** via **deep clustering** of pose-
graph embeddings, enabling label-free discovery of action
boundaries in 3D skeleton sequences.

1.2. Input Representation

Given an input 3D pose sequence X ∈ RT×J×3, where T
represents the total number of frames, J the number of joints,
and 3 the spatial dimensions (x, y, z), the sequence is par-
titioned into N non-overlapping sub-pose sequences of size
(W,J, 3). Here, W is a fixed window size, and N is the total
number of sub-sequences, given by:

N =
T

W
(1)

Each sub-pose sequence Xi ∈ RW×J×3 is fed into the
ASTGCN model to compute embeddings of each sub-
pose.

1.3. Feature Extraction

The ASTGCN model processes each sub-pose sequence Xi ∈
RW×J×3 through a series of graph convolutions. The graph
is constructed where nodes correspond to joints, and edges
encode spatial and temporal relationships between adjacent
joints and frames. The spatial-temporal graph convolution
operation is defined as:

H(l) = A ·H(l−1) ·W(l) (2)

where H(l) is the feature matrix at layer l, A is the adjacency
matrix capturing joint relationships, and W(l) is the learn-
able weight matrix at layer l. The ASTGCN outputs a feature
embedding H ∈ RW×J×D, where D is the embedding di-
mension.

1.4. Denoising - Sub-Pose Sequence Reconstruction

After obtaining the embeddings, we apply a **denoising
stage** to refine the learned representations. This stage uses
a fully connected layer to reconstruct the original input se-
quence from the embeddings. The reconstruction loss is
computed as:

Lrec = ∥X̂i −Xi∥22 (3)

where X̂i is the reconstructed sub-pose sequence and Xi is
the original sub-pose sequence.

1.5. Temporal Graph Clustering

In the clustering stage, we aim to separate the action segments
by clustering the frame embeddings. To do this, we first ap-
ply **adaptive spatial [CLS] pooling** using a transformer
encoder:

zi = Transformerencoder(Hi) (4)

where zi is the pooled embedding for the i-th sub-pose se-
quence. The embeddings zi ∈ RW×D are then clustered
using **DBSCAN**, a density-based clustering method that
groups together spatially dense points and separates sparse
regions. DBSCAN requires two key parameters: the **mini-
mum number of points** (minPts) in a cluster and the **min-
imum radius** (ϵ) to consider points as neighbors.

1.5.1. DBSCAN and MBC-B Algorithm

DBSCAN operates by iteratively exploring the neighborhood
of each point in the embedding space. If a point has enough
neighboring points within a given radius ϵ, it forms a core
point and a cluster is assigned. Otherwise, the point is la-
beled as noise. The main challenge in applying DBSCAN is
choosing the correct ϵ value. We use the Minimum Ball Ra-
dius Covering B Points (MBC-B) Algorithm [4] to calculate
the optimal ϵ by examining the **k-distance** graph. The
MBC-B algorithm computes ϵ as the distance to the k-th near-
est neighbor for each point:

ϵ = MBC-B(k) = distance to the k-th nearest neighbor (5)

where k is typically set as 2D + 1, ensuring that the radius is
adaptively determined based on the data distribution.

1.6. Clustering Loss Functions

To guide the clustering process, we use two loss functions
to improve the quality of the clusters: 1. **Silhouette Score
Loss** (LSC) measures how similar a sample is to its own
cluster compared to other clusters:

LSC =
1

N

N∑
i=1

b(i)− a(i)

max{a(i), b(i)}
(6)

where a(i) is the average distance of the i-th point to all other
points in the same cluster, and b(i) is the minimum average
distance to points in a different cluster.

2. **Sum of Squared Error Loss** (LSSE) minimizes the
variance within clusters:

LSSE =

N∑
i=1

∥zi − cyi∥22 (7)

where cyi is the centroid of the cluster to which the i-th point
belongs, and yi is the cluster assignment.

The total loss function is:

Ltotal = Lrec + λ1LSC + λ2LSSE (8)

where λ1 and λ2 are hyperparameters controlling the impor-
tance of each loss term.

1.7. End-to-End Training

The entire model is trained in an end-to-end manner using a
self-supervised approach. No temporal labels or annotations
are required during training. The model simultaneously learns
to generate embeddings for the pose sequences, perform de-
noising, and perform clustering on the temporal embeddings
to identify action boundaries.

1.8. Inference

During inference, a pose sequence X ∈ RT×J×3 is parti-
tioned into N sub-pose sequences of size (W,J, 3). Each sub-
pose sequence is passed through the pre-trained ASTGCN
model to obtain embeddings. The clustering stage (Stage 2)
is applied to the complete sequence of embeddings, and DB-
SCAN is used to identify action segments. Temporal segmen-
tation is obtained by finding cluster boundaries. The mean
Average Precision (mAP) is then computed for evaluation of
the temporal localization performance.

1.9. Theoretical Justification: Temporal Graph Segmen-
tation via Deep Clustering

We now provide a mathematical and graph-theoretic interpre-
tation of our self-supervised temporal segmentation frame-
work. Our method can be understood as an approximate
solution to a **temporal graph partitioning** problem in a
learned latent space, where motion transitions correspond to
weakly connected regions in a temporal graph formed over
pose embeddings.

1.9.1. Pose Sequence as Spatio-Temporal Graph

Let a 3D skeleton sequence be denoted as P = {Pt}Tt=1,
where Pt ∈ RJ×3 represents the J-joint skeletal pose at time
t. We divide P into N non-overlapping temporal blocks Si ∈
RW×J×3 of window size W ≪ T . Each sub-sequence Si is
treated as a **spatio-temporal graph** Gi = (Vi, Ei), where:
- Each node vtj ∈ Vi corresponds to joint j at time t in block
i. - Edges Ei are formed spatially (between joints) and tem-
porally (across consecutive frames).

Using ASTGCN, we learn an embedding tensor Xi ∈
RW×J×D, where each node embedding xtj ∈ RD captures
local spatial and temporal dynamics of joint j at time t in
block i.

1.9.2. Spatial Pooling via Transformer

To aggregate joint-level features into frame-level embed-
dings, we apply a transformer encoder with a learned [CLS]
token across the J joints for each time t. The attention mech-
anism adaptively weighs spatial contributions of joints and
yields a temporally contextualized spatially pooled represen-
tation:

zt = CLS-Pool({xtj}Jj=1) ∈ RD.

Over all t ∈ {1, . . . , T}, we obtain the embedding sequence
Z = {z1, . . . , zT } representing the temporally smoothed dy-
namics.

1.9.3. Latent Temporal Graph Construction

We define a **latent temporal graph** GT = (VT , ET) in the
embedding space where: - Each node vt ∈ VT corresponds to

frame-level embedding zt. - Edge weights encode temporal
similarity:

wtt′ = exp

(
−∥zt − zt′∥2

σ2

)
, |t− t′| ≤ k,

for some temporal neighborhood k and temperature σ. This
yields a sparse, weighted graph encoding temporal continuity.

1.9.4. DBSCAN as Graph Cut Approximation

DBSCAN operates by identifying high-density regions in RD

and separating them by low-density gaps. Formally, it parti-
tions Z into disjoint sets {C1, . . . , CK} satisfying: - For each
zt ∈ Ck, there exist at least points in ϵ-neighborhood:

Nϵ(zt) = {zt′ | ∥zt − zt′∥ ≤ ϵ}.

- Clusters are maximal w.r.t. density-connectivity.
From a graph-theoretic view, this is equivalent to identi-

fying connected components in a ϵ-radius **ϵ-graph** over
GT , where:

(vt, vt′) ∈ Eϵ
T ⇐⇒ ∥zt − zt′∥ ≤ ϵ.

Thus, DBSCAN implicitly performs **graph cutting** by
severing edges across low-similarity (sparse) regions—these
cuts align with **motion transitions** where pose dynamics
change.

1.9.5. Relation to Motion Boundaries

Let zt and zt+1 belong to different DBSCAN clusters. Then:

∥zt − zt+1∥ > ϵ ⇒ wt,t+1 < τ,

where τ = exp(−ϵ2/σ2) is the induced edge weight thresh-
old. Such weak edges imply a high likelihood of discontinuity
in the underlying motion manifold.

This aligns with perceptual motion boundaries where limb
trajectories, joint angles, or activity type shifts abruptly. Since
zt encodes ASTGCN-derived kinematic and topological con-
text, discontinuities in zt reflect semantic action boundaries.

Our method offers a principled interpretation of unsu-
pervised temporal segmentation as a latent-space spatio-
temporal graph cut problem. This provides strong theoretical
motivation for the observed empirical alignment between
DBSCAN clusters and actual motion transitions.

2. REFERENCES

[1] Meng Liu, Yue Liu, Ke Liang, Wenxuan Tu, Siwei Wang,
Sihang Zhou, and Xinwang Liu, “Deep temporal graph
clustering,” arXiv preprint arXiv:2305.10738, 2023.

[2] Haodong Duan, Jiaqi Wang, Kai Chen, and Dahua Lin,
“Revisiting skeleton-based action recognition: Model-
ing intra-body relation with dynamic group-based spatial-
temporal gcn,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2022, pp. 6500–6509.

[3] Zhan Chen, Sicheng Li, Bing Yang, Qinghan Li, and
Hong Liu, “Multi-scale graph convolutional network for
skeleton-based action recognition,” in Proceedings of
the European Conference on Computer Vision (ECCV),
2022.

[4] Weicheng Xu, Tianwei Xu, Leonid Sigal, and Alexander
Mandt, “Contrastive learning under temporal segmen-
tation,” in Advances in Neural Information Processing
Systems, 2023.

	 Methodology
	 Overview
	 Input Representation
	 Feature Extraction
	 Denoising - Sub-Pose Sequence Reconstruction
	 Temporal Graph Clustering
	 DBSCAN and MBC-B Algorithm

	 Clustering Loss Functions
	 End-to-End Training
	 Inference
	 Theoretical Justification: Temporal Graph Segmentation via Deep Clustering
	 Pose Sequence as Spatio-Temporal Graph
	 Spatial Pooling via Transformer
	 Latent Temporal Graph Construction
	 DBSCAN as Graph Cut Approximation
	 Relation to Motion Boundaries

	 References

