# SUPPLEMENTARY MATERIAL FOR ULTRASOUND IMAGE DENOISING WITH MONTE-CARLO RISK ESTIMATION

Ashutosh Gupta<sup>1,4</sup> Chandra Sekhar Seelamantula<sup>2</sup> Thierry Blu<sup>3</sup> Himanshu Shekhar<sup>4</sup>, Nitant Dube<sup>1</sup> Shanmuganathan Raman<sup>4</sup>

<sup>1</sup> Space Applications Centre, ISRO, Ahmedabad, India
 <sup>2</sup> Department of Electrical Engineering, Indian Institute of Science (IISc.), Bengaluru, India
 <sup>3</sup>Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
 <sup>4</sup> Indian Institute of Technology (IIT), Gandhinagar, India

#### 1. NOTATIONS

Throughout the paper and the supplementary material, we use the following notations:

- 1. Y to denote m dimensional multivariate (vector) random variables.
- 2.  $\mathbf{y}$  to denote m dimensional samples from the corresponding random variables.
- 3. Y to denote scalar random variables.
- 4. y to denote samples from the corresponding scalar random variable or a constant depending on the context.
- 5.  $Y_i$  is  $i^{th}$  scalar random variable of a vector random variable Y.
- 6.  $y_i$  is  $i^{th}$  pixel represented as realization of a scalar random variable Y.
- 7.  $\mathbb{E}$  is expectation operator (underlying random variable is clear from context or mentioned explicitly),  $\odot$  is element-wise (Hadamard) product.

## 2. DETAILS ON UNBIASED RISK ESTIMATION

#### 2.1. Oracle MSE

Our aim is to obtain an estimate of  $\mathbf{x}$  (a realization of  $\mathbf{X}$ ), given the measurement  $\mathbf{y}$ , which is a realization of random image variable  $\mathbf{Y}$ . We denote this estimate as a function of observables,  $\hat{\mathbf{x}} = \mathbf{f}(\mathbf{Y})$ . In general,  $\mathbf{f}$  may be any linear or non-linear, parametric or non-parametric function. The criterion which we choose to minimize is the ensemble-averaged mean-square error (or *risk*) between  $\mathbf{x}$  and  $\hat{\mathbf{x}}$ 

$$\zeta(\mathbf{f}) = \frac{1}{m} \mathbb{E}\{\|\mathbf{f}(\mathbf{Y}) - \mathbf{x}\|^2\} = \frac{1}{m} \sum_{i=1}^{m} (x_i - f_i(\mathbf{Y}))^2, \tag{1}$$

which requires knowledge of the ground-truth reflectance x. Consider the expansion of Eq. (1) (without the factor 1/m),

$$\zeta(\mathbf{f}) = \|\mathbf{x}\|^2 + \mathbb{E}\{\|\mathbf{f}(\mathbf{Y})\|^2\} - 2\sum_{i=1}^m \mathbb{E}\{x_i f_i(\mathbf{Y})\},\tag{2}$$

where  $f_i(\mathbf{Y})$  denotes the  $i^{th}$  entry of the denoised image. Since the optimization is carried out with respect to  $\mathbf{f}$ , the deterministic (but unknown) factor  $\|\mathbf{x}\|^2$  does not play a role (in contrast with the Bayesian framework, where a prior is assumed on  $\mathbf{x}$ ). On the other hand, the term  $\mathbb{E}\{x_i f_i(\mathbf{Y})\}$  depends on the unknowns  $x_i$  and hence a direct optimization is not possible without knowledge of the ground truth image. Throughout our work, we call this version of the cost the *Oracle MSE estimate*.

### 2.2. Proof of Corollary 1.1 (our result from main paper)

To estimate the Oracle MSE without the ground truth, unbiased risk estimation methods can be applied. Seelamantula and Blu [1] first presented a surrogate risk for the case of multiplicative Gamma distributed noise model called Multiplicative Unbiased Risk Estimate (MURE). In this section, We present a detailed proof of corollary 1.1 from the main paper.

**Theorem 1.** (Multivariate version) Let  $\mathbf{Y} = \mathbf{x}\mathbf{N}$ , where  $\mathbf{x} \in \mathbb{R}_+^{\mathbf{m}}$  is deterministic but unknown reflectance image. Let  $\mathbf{Y}, \mathbf{N} \in \mathbb{R}_+^m$ , and  $\mathbf{N} \sim \Gamma(k, k)$  with independent entries, then, the vector random variable

$$\hat{\zeta}(\mathbf{f}) = \frac{k}{k+1} \|\mathbf{Y}\|^2 - 2\mathbf{Y}^{\mathsf{T}} \mathcal{M} \mathbf{f}(\mathbf{Y}) + \|\mathbf{f}(\mathbf{Y})\|^2$$
(3)

is an unbiased estimator of the MSE,  $\zeta(\mathbf{f}) = \mathbb{E}_{\mathbf{N}}\{\|\mathbf{f}(\mathbf{Y}) - \mathbf{x}\|^2\}$ , where  $\mathbb{E}$  is the expectation operator. For a scalar function f(Y), the operator  $\mathcal{M}$  is defined as  $\mathcal{M}f(Y) = k \int_0^1 s^{k-1} f(sY) ds$ . This notation is extended straightforwardly to multivariate vector functions  $\mathbf{f}(\mathbf{Y}) = [f_1(\mathbf{Y}), f_2(\mathbf{Y}), \dots, f_m(\mathbf{Y})]^T$  according to  $\mathcal{M}\mathbf{f}(\mathbf{Y}) = [\mathcal{M}_1 f_1(\mathbf{Y}), \mathcal{M}_2 f_2(\mathbf{Y}), \dots, \mathcal{M}_m f_m(\mathbf{Y})]^T$ , where  $\mathcal{M}_i \mathbf{f}_i(\mathbf{Y})$  applies the operator  $\mathcal{M}$  to the  $i^{th}$  input component of  $\mathbf{f}(\mathbf{Y})$  only.

**Corollary 1.1.** (Multivariate, series version of MURE) Let  $\mathbf{Y} = \mathbf{x}\mathbf{N}$ , where  $\mathbf{x} \in \mathbb{R}_+^{\mathbf{m}}$  is deterministic but unknown reflectance image. Let  $\mathbf{Y}, \mathbf{N} \in \mathbb{R}_+^m$ , and  $\mathbf{N} \sim \Gamma(k, k)$  with independent entries, then, the vector random variable

$$\hat{\zeta}(\mathbf{f}) = \frac{k}{k+1} \|\mathbf{Y}\|^2 + \|\mathbf{f}(\mathbf{Y})\|^2 - 2\sum_{i=1}^m \sum_{p=0}^\infty (-1)^p \frac{k!}{(k+p)!} Y_i^{p+1} \frac{\partial \mathbf{f}_i^{(p)}(\mathbf{Y})}{\partial Y_i},\tag{4}$$

is an unbiased estimator of the MSE,  $\zeta(\mathbf{f}) = \mathbb{E}_{\mathbf{N}}\{\|\mathbf{f}(\mathbf{Y}) - \mathbf{x}\|^2\}$ , where  $\mathbb{E}$  is the expectation operator. p is the order of partial derivative of  $\mathbf{f}_i(\mathbf{Y})$  w.r.t.  $\mathbf{Y}_i$ , the  $i^{th}$  pixel of the input noisy image.

*Proof.* We first prove the case for a scalar function  $f: \mathbb{R} \to \mathbb{R}$ . We have:

$$\mathbb{E}\{(f(Y)-x)^2\} = \mathbb{E}\{f(Y)^2\} + \mathbb{E}\{x^2\} - 2\mathbb{E}\{xf(Y)\}.$$

Expanding term by term,

•  $\mathbb{E}\{Y^2\} = \mathbb{E}\{x^2n^2\} = \frac{k+1}{k}\mathbb{E}\{x^2\}$ , and hence

$$\mathbb{E}\{x^2\} = \frac{k}{k+1} \mathbb{E}\{Y^2\}. \tag{5}$$

• We have,  $\mathbb{E}\{xf(Y)\}$ 

$$= \int_{0^{+}}^{\infty} x f(Y) f_{N}(n) dn$$

$$= \int_{0^{+}}^{\infty} x f(Y) \frac{k^{k}}{\Gamma(k)} n^{k-1} e^{-kn} dn$$

$$= \int_{0^{+}}^{\infty} kx f(Y) \frac{n^{k} k^{k}}{\Gamma(k)} \left[ \frac{e^{-kn}}{nk} \right] dn$$

$$= \int_{0^{+}}^{\infty} kx f(Y) \left[ \int_{0^{+}}^{1} \frac{n^{k} k^{k}}{\Gamma(k)} \frac{1}{s^{2}} e^{-kn/s} ds \right] dn$$

$$= \int_{0^{+}}^{\infty} kx \left[ \int_{0^{+}}^{1} f(xn) \frac{ns^{k-1}}{s^{2}} f_{N}(n/s) ds \right] dn,$$

changing the order of integration and substituting p = n/s,

$$\int_{0+}^{\infty} kx \left[ \int_{0+}^{1} f(xn) \frac{ns^{k-1}}{s^{2}} f_{N}(n/s) ds \right] dn$$

$$= \int_{0+}^{1} \int_{0+}^{\infty} kxp f(xps) s^{k-1} f_{N}(p) dp ds$$

$$= \int_{0+}^{\infty} Y \left[ k \int_{0+}^{1} f(sY) s^{k-1} ds \right] f_{N}(p) dp,$$

$$= \mathbb{E}\{Y \mathcal{M}f(Y)\}.$$
(6)

where we applied change of order of integration (assuming conditions of Fubini's theorem to be true and that the limit exists at 0) again, and substituted Y = xp. Using (5) and (6), we have,  $\mathbb{E}\{(f(Y) - x)^2\}$ 

$$= \mathbb{E}\left\{f(Y)^2 - 2Y\mathcal{M}f(Y) + \frac{k}{k+1}Y^2\right\}.$$
$$= \mathbb{E}\{\hat{\zeta}(f)\}.$$

Which shows that the MURE cost  $\hat{\zeta}(f)$  is an unbiased estimator of the oracle cost  $\zeta(f)$ . For a scalar function f(Y), the operator  $\mathcal{M}$  is defined as  $\mathcal{M}f(Y) = k \int_0^1 s^{k-1} f(sY) ds$ . This notation is extended straightforwardly to multivariate vector functions  $\mathbf{f}(\mathbf{Y}) = [f_1(\mathbf{Y}), f_2(\mathbf{Y}), \dots, f_m(\mathbf{Y})]^T$  according to  $\mathcal{M}\mathbf{f}(\mathbf{Y}) = [\mathcal{M}_1 f_1(\mathbf{Y}), \mathcal{M}_2 f_2(\mathbf{Y}), \dots, \mathcal{M}_m f_m(\mathbf{Y})]^T$ , where  $\mathcal{M}_i \mathbf{f}_i(\mathbf{Y})$  applies the operator  $\mathcal{M}$  to the  $i^{th}$  input component of  $\mathbf{f}(\mathbf{Y})$  only. Hence, the multivariate result is straightforward to obtain by applying the scalar version of the estimator in Theorem 1 of the main paper to the individual components of the cost function in (1). Thus the cost for a vector function can be written as

$$\hat{\zeta}(\mathbf{f}) = \frac{k}{k+1} \|\mathbf{Y}\|^2 + \|\mathbf{f}(\mathbf{Y})\|^2 - 2\mathbf{Y}^{\mathsf{T}} \mathcal{M} \mathbf{f}(\mathbf{Y})$$
(7)

For the series approximation, we note that the cross term operator  $\mathcal{M}$  for a vector to vector function can be expanded by applying the integration-by-parts operation:

$$\mathcal{M}_{i}f_{i}(\mathbf{Y}) = \mathcal{M}_{i}f_{i}(Y_{1}, Y_{2}, ..., Y_{i}, ..., Y_{m}) 
= k \int_{0}^{1} s^{k-1} f_{i}(Y_{1}, Y_{2}, ..., sY_{i}, ..., Y_{m}) ds, 
= k \int_{0}^{1} s^{k-1} f_{i}(\mathbf{S}_{i}\mathbf{Y}) ds, 
= s^{k} f_{i}(\mathbf{S}_{i}\mathbf{Y}) \Big|_{0}^{1} - \int_{0}^{1} Y_{i} f_{i}^{'}(\mathbf{S}_{i}\mathbf{Y}) s^{k} ds, 
= f_{i}(Y_{i}) - \int_{0}^{1} Y_{i} f_{i}^{'}(\mathbf{S}_{i}\mathbf{Y}) s^{k+1} ds, 
= f_{i}(\mathbf{Y}) - \left(\frac{s^{k+1}}{k+1} Y_{i} f_{i}^{'}(\mathbf{S}_{i}\mathbf{Y})\right) \Big|_{0}^{1} - \int_{0}^{1} Y_{i} f_{i}^{'}(\mathbf{S}_{i}\mathbf{Y}) s^{k+1} ds , 
= f_{i}(\mathbf{Y}) - \frac{1}{k+1} Y_{i} f_{i}^{'}(\mathbf{Y}) + \frac{1}{k+1} \int_{0}^{1} Y_{i} f_{i}^{'}(\mathbf{S}_{i}\mathbf{Y}) s^{k+1} ds , 
= \sum_{p=0}^{\infty} (-1)^{p} \frac{k!}{(k+p)!} Y_{i}^{p} \frac{\partial f_{i}^{(p)}(\mathbf{Y})}{\partial Y_{i}},$$
(8)

where  $S_i$  is a matrix constructed by replacing  $i^{th}$  diagonal element of identity matrix by s. Finally, writing all terms together

for the vector version, we have:

$$\mathbb{E}_{\mathbf{N}}\{\hat{\zeta}(\mathbf{f})\} = \mathbb{E}_{\mathbf{N}}\left\{\frac{k}{k+1}\|\mathbf{Y}\|^2 + \|\mathbf{f}(\mathbf{Y})\|^2 - 2\sum_{i=1}^m \sum_{p=0}^\infty (-1)^p \frac{k!}{(k+p)!} Y_i^{p+1} \frac{\partial \mathbf{f}_i^{(p)}(\mathbf{Y})}{\partial Y_i}\right\}$$

$$= \mathbb{E}_{\mathbf{N}}\left\{\frac{k}{k+1}\|\mathbf{Y}\|^2 + \|\mathbf{f}(\mathbf{Y})\|^2 - 2\mathbf{Y}^{\mathsf{T}}\mathcal{M}\mathbf{f}(\mathbf{Y})\right\}$$

$$= \mathbb{E}_{\mathbf{N}}\left\{\|\mathbf{x}\|^2 + \|\mathbf{f}(\mathbf{Y})\|^2 - 2\sum_{i=1}^m x_i f_i(\mathbf{Y})\right\}$$

$$= \mathbb{E}_{\mathbf{N}}\{\zeta(\mathbf{f})\}.$$

Thus, our proposed series-version of MURE is an unbiased estimator of the Oracle cost in Eq. 1. This completes the proof.

For all our experiments n = K = 1 yields reasonably good approximation with low computational complexity.

#### 3. REFERENCES

[1] Chandra Sekhar Seelamantula and Thierry Blu, "Image denoising in multiplicative noise," in 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015, pp. 1528–1532.