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1. NOTATIONS

Throughout the paper and the supplementary material, we use the following notations:
1. Y to denote m dimensional multivariate (vector) random variables.
2. y to denote m dimensional samples from the corresponding random variables.
3. Y to denote scalar random variables.

4. y to denote samples from the corresponding scalar random variable or a constant depending on the context.

b

Y; is i" scalar random variable of a vector random variable Y.
6. y; is i'" pixel represented as realization of a scalar random variable Y.
7. E is expectation operator (underlying random variable is clear from context or mentioned explicitly), ® is element-wise

(Hadamard) product.

2. DETAILS ON UNBIASED RISK ESTIMATION

2.1. Oracle MSE

Our aim is to obtain an estimate of x (a realization of X), given the measurement y, which is a realization of random image
variable Y. We denote this estimate as a function of observables, X = f(Y). In general, f may be any linear or non-linear,
parametric or non-parametric function. The criterion which we choose to minimize is the ensemble-averaged mean-square error
(or risk) between x and X
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which requires knowledge of the ground-truth reflectance x. Consider the expansion of Eq. (1) (without the factor 1/m),
C(F) = [Ix|I* + E{IECY)?} — 2D Efaafi(Y)}, 2)
i=1

where f;(Y) denotes the i" entry of the denoised image. Since the optimization is carried out with respect to f, the deterministic
(but unknown) factor ||x||? does not play a role (in contrast with the Bayesian framework, where a prior is assumed on x). On
the other hand, the term E{x;f;(Y)} depends on the unknowns x; and hence a direct optimization is not possible without
knowledge of the ground truth image. Throughout our work, we call this version of the cost the Oracle MSE estimate.



2.2. Proof of Corollary 1.1 (our result from main paper)

To estimate the Oracle MSE without the ground truth, unbiased risk estimation methods can be applied. Seelamantula and Blu
[1] first presented a surrogate risk for the case of multiplicative Gamma distributed noise model called Multiplicative Unbiased
Risk Estimate (MURE). In this section, We present a detailed proof of corollary 1.1 from the main paper.

Theorem 1. (Multivariate version) Let Y = xN, where x € RY is deterministic but unknown reflectance image. Let Y ,N €
R, and N ~ I'(k, k) with independent entries, then, the vector random variable

<) =+ H||Y||2 2YTME(Y) + [[E(Y)I? 3)
is an unbiased estimator of the MSE, ((f) = En{||f(Y) — x||2}, where E is the expectation operator. For a scalar function
F(Y), the operator M is defined as Mf(Y) =k fol sk¥=1f(sY)ds. This notation is extended straightforwardly to multivariate
vector functions £(Y) = [f1(Y), fo(Y),..., fm(Y)]" according to MEf(Y) = [M1f1(Y), Mafa(Y), ..., Mpfm(Y)]%,
where M;fi(Y) applies the operator M to the i™ input component of £(Y ) only.

Corollary 1.1. (Multivariate, series version of MURE) Let' Y = xN, where x € RY" is deterministic but unknown reflectance
image. Let Y N € R, and N ~ T'(k, k) with independent entries, then, the vector random variable
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is an unbiased estimator of the MSE, ((f) = En{||f(Y) — x||?}, where [ is the expectation operator. p is the order of partial
derivative of £;(Y) w.r.t. Y, the i*" pixel of the input noisy image.

Proof. We first prove the case for a scalar function f : R — R. We have:
E{(f(Y)-2)’} = E{f(Y¥)’}+E{z*} - 2E{af(Y)}.
Expanding term by term,
« E{Y?} = E{2?n?} = ELE{2?}, and hence

k
E{2?} = mE{YQ}. ®)

* We have, E{zf(Y)}
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changing the order of integration and substituting p = n/s,
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E{Y Mf(Y)}. (6)
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where we applied change of order of integration (assuming conditions of Fubini’s theorem to be true and that the limit exists at
0) again, and substituted Y = xp. Using (5) and (6), we have, E{(f(Y) — z)?}

E{f(Y)Z—QYMf( )+kfily2}
= E{{()}-

Which shows that the MURE cost (f) is an unbiased estimator of the oracle cost ¢(f). For a scalar function f(Y), the
operator M is defined as Mf(Y) = k fol s*=1f(sY)ds. This notation is extended straightforwardly to multivariate vector
functions f(Y) = [f1(Y), f2(Y),..., fm(Y)]" according to ME(Y) = [M1f1(Y), M2fa(Y), ..., Mpfm(Y)]", where
M, fi(Y) applies the operator M to the i input component of f(Y) only. Hence, the multivariate result is straightforward to
obtain by applying the scalar version of the estimator in Theorem 1 of the main paper to the individual components of the cost
function in (1). Thus the cost for a vector function can be written as

C(f) = = IYIIP + IE(Y)I* = 2Y " ME(Y) M
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For the series approximation, we note that the cross term operator M for a vector to vector function can be expanded by
applying the integration-by-parts operation:

Mifi(Y) = Mifi(Y1,Y2, ... Y5, Vi)
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where S; is a matrix constructed by replacing i*" diagonal element of identity matrix by s. Finally, writing all terms together



for the vector version, we have:
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Thus, our proposed series-version of MURE is an unbiased estimator of the Oracle cost in Eq. 1. This completes the
proof. O

For all our experiments n = K = 1 yields reasonably good approximation with low computational complexity.
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