Verifying the Long-range Dependency of RNN Language Models

Tzu-Hsuan Tseng, Tzu-Hsuan Yang and Chia-Ping Chen

National Sun Yat-sen University

IALP2016 @NCKU Nov 2016

Overview

- Introduction
- Language Model
 - N-gram
 - Recurrent Neural Network (RNN)
 - N-gram + RNN
- Evaluation measure
 - Perplexity
 - Word Prediction Accuracy
- Experiments
- Results
- Conclusion

Introduction

- Language Model (LM)
 - Probability distribution over sequences of words
 - Well-known LMs
 - N-gram
 - Recurrent Neural Network Language Model (RNN LM)
- Compare N-gram model with RNN LM
 - Perplexity
 - Word prediction accuracy
- Analysis on different word position

Language model

- N-gram
- Recurrent neural network (RNN)
- N-gram + RNN

N-gram

- Estimate probability of each word given preceding N 1 words
- Estimated by relative frequency

$$p(w|w_1, \dots, w_{k-1}) = \frac{Count(w_1, \dots, w_{k-1}, w)}{Count(w_1, \dots, w_{k-1})}$$

• Predict the word by the greatest conditional probability of words

Recurrent Neural Network (RNN)

- Contain input layer, hidden layer and output layer
- An additional loop at the hidden layer

Recurrent Neural Network (RNN)

- Suitable for sequential data
- Use One-hot representation in input layer
- Neuron output corresponds to the probability of the word

N-gram + RNN

- Strength of interpolation method
 - good context coverage
 - strong generalization
- Combine the probability of the RNNLM with N-gram model
- The interpolated LM probability :

$$p(w_i|h) = \lambda \cdot p_{ng}(w_i|h) + (1 - \lambda) \cdot p_{rnn}(w_i|h)$$

Evaluation measure

- Perplexity
- Word prediction accuracy

Perplexity

- Perplexity is an evaluation measure for language models
- A low perplexity means that the model is good at predicting words

$$PPL = p(D|M)^{-\frac{1}{N}}$$

p(D|M) : data likelihood

- *N* : number of words
- D : text set
- M : language model

Word Prediction Accuracy

- Use the greatest probability word as predicted word
- Compare the predicted word with the actual word
- Calculate the number of accurate words

$$Accuracy = \frac{correct \ prediction \ of \ word}{Number \ of \ word}$$

Datasets

- Penn Tree Bank(PTB)
- AMI meeting corpus(AMI)

Dataset	Sample sentences	Vocabulary size	Number of words	
PTB	now the field is less <unk> he added there is no asbestos in our products now</unk>	9999	train	887521
			validation	70390
			test	78669
AMI	OKAY YEAH UH MAYBE TO AS UH IT	11883	train	802824
			validation	94953
			test	89666

Table 1. Sample sentences and statistics of the datasets

Evaluation of word position p

- Use only probability of word position p in the sentence rather than entire text to calculate results
- Use the subset of the test set, with sentence of length at least *p*

Word position	Testing data
4	no it was n't it 's also costly some circuit breakers installed
5	no it was n't black some circuit breakers installed after

Table 2. Illustration of word position

System Implementation

- N-gram
 - trigram model
 - KN smoothing
- Interpolated model
 - Weight : 0.5

- RNN LM
 - 1 hidden layer
 - 200 hidden units

Results

Results

Word Prediction Accuracy

Figure 2. Word prediction accuracy against word position

Results

Perplexity

Figure 2. Perplexity against word position

17/18

Conclusion

- RNNLM always get better performance than n-gram in PTB, but it is opposite in AMI
- PTB contains written sentences, and AMI contains colloquial sentences
- RNNLM may be affected by data property and lead to worse performance than n-gram