

Indoor Localization via Vibration Tracking

Jeffrey D. Poston

- The difficulties of indoor localization by means of GPS or cellular-based methods are well known and prompted many other approaches:
 - UWB, Bluetooth beacons, RFID proximity to RFID readers, many Wi-Fi schemes, smartphone accelerometer/gyro INS,...

- The difficulties of indoor localization by means of GPS or cellular-based methods are well known and prompted many other approaches:
 - UWB, Bluetooth beacons, RFID proximity to RFID readers, many Wi-Fi schemes, smartphone accelerometer/gyro INS,...
 - → User must carry some device to enable localization

- The difficulties of indoor localization by means of GPS or cellular-based methods are well known and prompted many other approaches:
 - UWB, Bluetooth beacons, RFID proximity to RFID readers, many Wi-Fi schemes, smartphone accelerometer/gyro INS,...
 - → User must carry some device to enable localization
 - Cameras and computer vision algorithms
 - → Significant privacy concerns

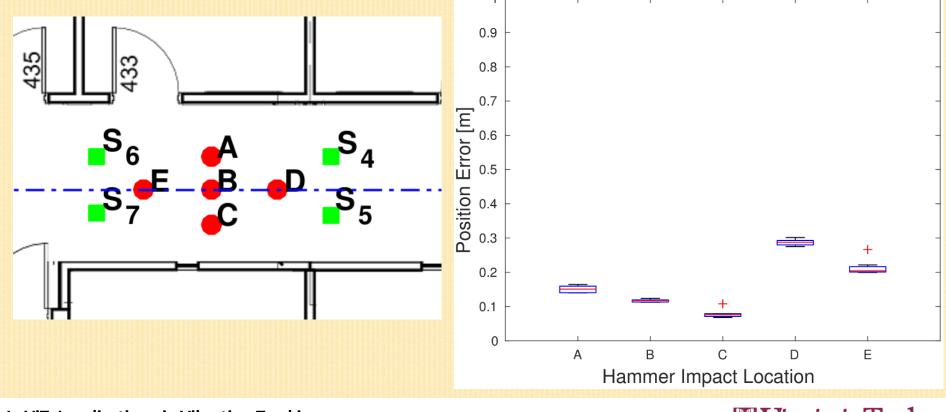
- The difficulties of indoor localization by means of GPS or cellular-based methods are well known and prompted many other approaches:
 - UWB, Bluetooth beacons, RFID proximity to RFID readers, many Wi-Fi schemes, smartphone accelerometer/gyro INS,...
 - → User must carry some device to enable localization
 - Cameras and computer vision algorithms
 - → Significant privacy concerns
- It would be preferable to offer an ambient localization service free of any demands on the building occupants

The proposed solution measures footstep vibrations with smart building accelerometers for localization

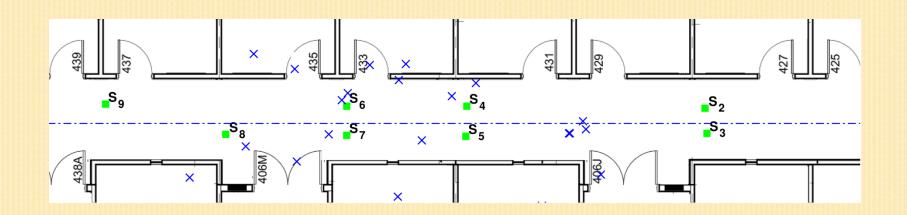
- Here "smart building" draws from a mature technology developed in civil and mechanical engineering:
 - Pioneering work by Kuroiwa in the 1960s instrumented buildings to measure seismic response
- The footstep localization is an emergent cyber physical system, a new role for an existing sensor network

•

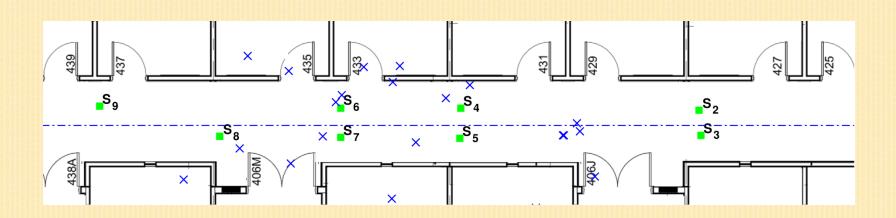
Virginia Tech's Goodwin Hall is the smart building for validating algorithms created in this research


- Installation of 200+ vibration sensors complied with building codes for a public building
- The sensors were mounted to steel girders supporting concrete floor slabs

Initial testing with conventional TDOA applied to measured hammer impacts appeared promising

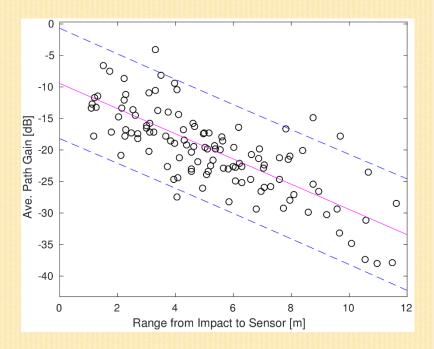

 Localization of floor impacts (•) from an instrumented hammer appeared to offer sub-meter accuracy from a conventional TDOA algorithm, with suitable sensor choice, geometry, etc.

I-LoViT: Localization via Vibration Tracking Jeffrey D. Poston


Invent the Future[®]

Attempting to localize footsteps over larger areas resulted in estimation errors of many meters . . . What happened?

Attempting to localize footsteps over larger areas resulted in estimation errors of many meters . . . What happened?



- Initial investigation worked within the framework of conventional TDOA
 - <u>Detectability</u>: TDOA needs at least 4 detections for unambiguous estimates
 - <u>Localizability</u>: Both measurement error and sensor geometry ("GDOP") influence accuracy of multilateration

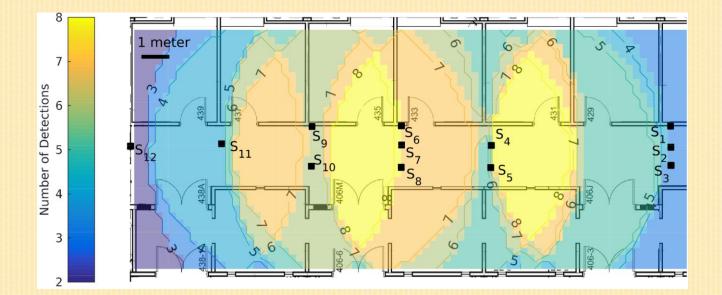
Detections generated by a footstep template matched filter

Prior impact measurements enable prediction of how footstep vibrations attenuate with distance

Given received signal, instrument noise and a decision threshold γ_{th} the following can be computed

Probability of detection

$$P_D = \mathcal{Q}\left(\frac{\gamma_{th} - E_S}{\sqrt{\sigma_N^2 E_S}}\right)$$


Probability of false alarm

$$P_{FA} = \mathcal{Q}\left(\frac{\gamma_{th}}{\sqrt{\sigma_N^2 E_S}}\right)$$

Detections generated by a footstep template matched filter; Plot shows semi-analytical forecast of detectability

• Plot shows number of sensors having $P_D \ge 0.9, P_{FA} = 10^{-3}$

Most of the positions in the hall would satisfy the need of at least 4 detections required by TDOA.

Localizability performance quantified by means of the Cramér-Rao Lower Bound (CRLB)

• An unbiased estimator of footstep coordinates θ has a variance no better than the CRLB:

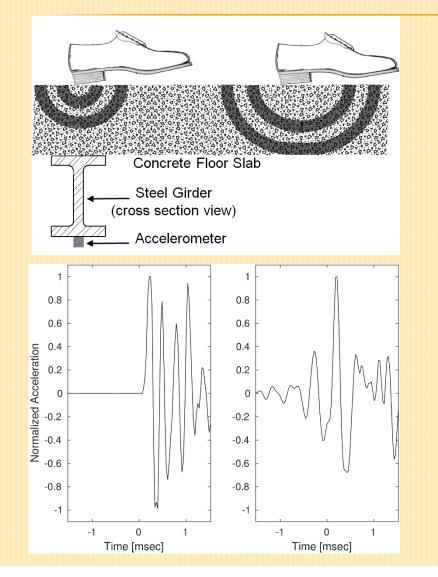
 $\operatorname{Var}(\hat{\boldsymbol{\theta}}) \geq \operatorname{FIM}^{-1}(\boldsymbol{\theta}), \quad \operatorname{FIM}\left(\boldsymbol{\theta}: [\theta_i, \theta_j, \dots]^{\mathsf{T}}\right) = -\mathsf{E}\left(\frac{\partial^2 \log p(\boldsymbol{x}|\boldsymbol{\theta})}{\partial \theta_i \theta_j}\right)$

FIM: Fisher Information Matrix

- For TDOA the FIM has the form: $FIM = \left[\frac{\partial f_{TDOA}(\boldsymbol{x})}{\partial \boldsymbol{x}}\right]^{T} \boldsymbol{C}_{N}^{-1} \left[\frac{\partial f_{TDOA}(\boldsymbol{x})}{\partial \boldsymbol{x}}\right]^{T}$
- The localization accuracy is constrained by both the measurement uncertainty (covariance C_N) and the cofactor of Geometric Dilution of Precision (GDOP)

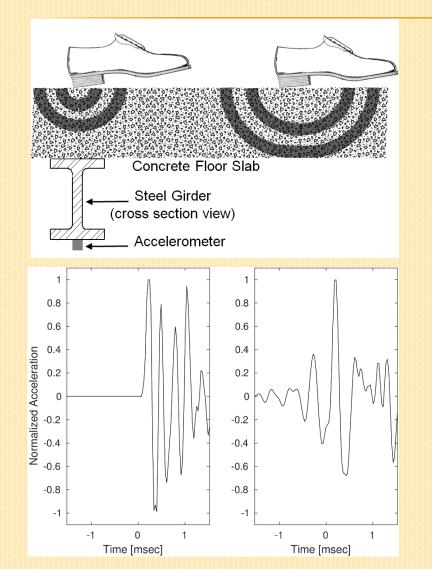
Geometric Dilution of Precision (GDOP) can be expressed as ratio relative to other TDOA error sources

GDOP ratio =
$$\sqrt{\text{Tr}(\text{FIM}^{-1})}/\sigma_{\text{TDOA}}$$


FIM: Fisher Information Matrix

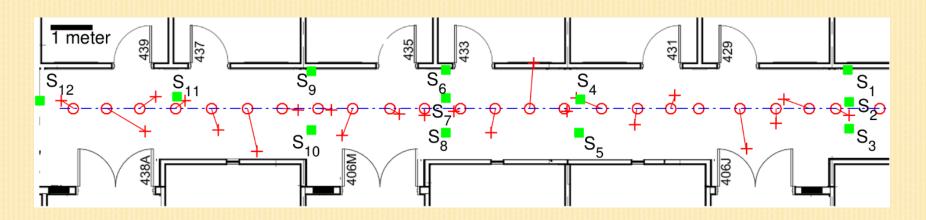
• The hall asymmetry of sensor placement does influence GDOP, but doesn't fully explain poor localization.

A key insight comes from understanding the types of footstep-to-sensor interaction



Footsteps directly above a girder-mounted sensor have a clear wave arrival (lower left), but those that travel laterally many meters undergo dispersion, reflections, etc. producing the complicated arrival wave (lower right)

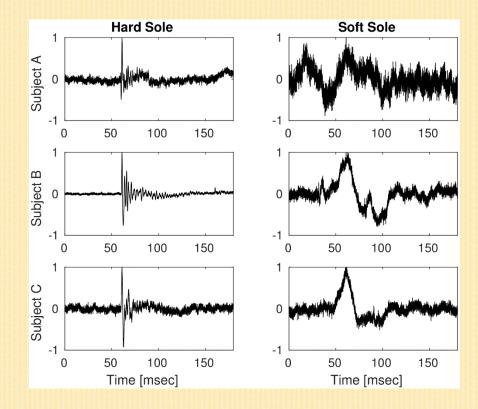
This is why footstep localization is not a trivial application of TDOA techniques from wireless or acoustics literature


Different footstep-to-sensor interactions call for different arrival time estimation methods

- For footsteps directly above a sensor the matched filter's detection time suffices
- For distant footsteps, a method from seismology (Maeda'85) is appropriate for arrival time estimation
- Also, a search for the best fit propagation speed makes TDOA robust to uncertainty about building materials

Proposed approach applied to footsteps on Goodwin 4th floor Northeast hall gives 0.6 m RMSE

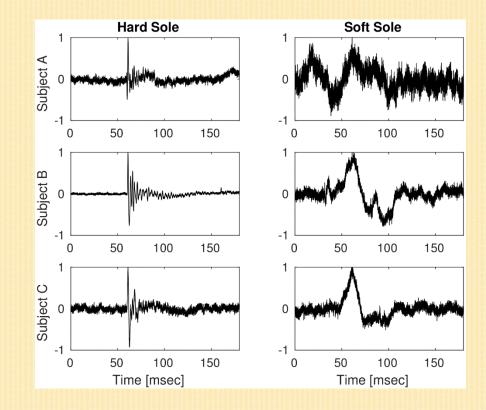
- A person walked a path (-) marked by tape
- Ground truth (o) provided by a LIDAR synchronized to the building sensor system
- Estimated positions (+) linked by line to ground truth point.
- Additional trials in were similar (RMSE 0.54 m to 0.8 m)



Indoor localization of footsteps to sub-meter accuracy is feasible. What about occupancy counts, tracking, ...?

- How to link a footstep to the person generating it?
- Footwear and gait could be discriminating features

One sensor's record of distinct footsteps at the same place



Indoor localization of footsteps to sub-meter accuracy is feasible. What about occupancy counts, tracking, ...?

- How to link a footstep to the person generating it?
- Footwear and gait could be discriminating features
- Eventually the combination of the footstep biometrics and location may pose a privacy risk

One sensor's record of distinct footsteps at the same place

Closing Remarks

This localization task needs to account for the physics of footstep-to-sensor interaction and, thus, must do more than recycle TDOA methods in acoustics and wireless literature

Benefits

•

- Enables a device-free, ambient localization service
- Avoids burdening radio spectrum
- May facilitate fall detection and localization

