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Why create another technique for indoor localization?

The difficulties of indoor localization by means of GPS or
cellular-based methods are well known and prompted many
other approaches:

UWSB, Bluetooth beacons, RFID proximity to RFID readers,
many Wi-Fi schemes, smartphone accelerometer/gyro INS,...
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The difficulties of indoor localization by means of GPS or
cellular-based methods are well known and prompted many
other approaches:

UWSB, Bluetooth beacons, RFID proximity to RFID readers,
many Wi-Fi schemes, smartphone accelerometer/gyro INS,...

- User must carry some device to enable localization
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Why create another technique for indoor localization?

The difficulties of indoor localization by means of GPS or
cellular-based methods are well known and prompted many
other approaches:

UWSB, Bluetooth beacons, RFID proximity to RFID readers,
many Wi-Fi schemes, smartphone accelerometer/gyro INS,...

- User must carry some device to enable localization
Cameras and computer vision algorithms
—> Significant privacy concerns
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Why create another technique for indoor localization?

The difficulties of indoor localization by means of GPS or

cellular-based methods are well known and prompted many
other approaches:

UWSB, Bluetooth beacons, RFID proximity to RFID readers,
many Wi-Fi schemes, smartphone accelerometer/gyro INS,...

- User must carry some device to enable localization
Cameras and computer vision algorithms
—> Significant privacy concerns

It would be preferable to offer an ambient localization service
free of any demands on the building occupants
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The proposed solution measures footstep vibrations with
smart building accelerometers for localization

Here “smart building” draws from a mature technology
developed in civil and mechanical engineering:

Pioneering work by Kuroiwa in the 1960s instrumented
buildings to measure seismic response

The footstep localization is an emergent cyber physical system,
a new role for an existing sensor network
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Virginia Tech’s Goodwin Hall is the smart building for
validating algorithms created in this research

Installation of 200+ vibration
sensors complied with building
codes for a public building

The sensors were mounted to
steel girders supporting
concrete floor slabs
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Initial testing with conventional TDOA applied to measured
hammer impacts appeared promising

Localization of floor impacts (¢) from an instrumented hammer
appeared to offer sub-meter accuracy from a conventional

TDOA algorithm, with suitable sensor choice, geometry, etc.
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Attempting to localize footsteps over larger areas resulted
in estimation errors of many meters ... What happened?
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Attempting to localize footsteps over larger areas resulted
in estimation errors of many meters ... What happened?

Initial investigation worked within the framework of
conventional TDOA

Detectability: TDOA needs at least 4 detections for
unambiguous estimates

Localizability: Both measurement error and sensor
geometry (“GDOP”) influence accuracy of multilateration
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Detections generated by a footstep template matched filter

Prior impact measurements
enable prediction of how
footstep vibrations attenuate
with distance
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Given received signal,
instrument noise and a
decision threshold ~:» the
following can be computed

Probability of detection

PD:Q(

Yth—Es
\/O“I?\IES

Probability of false alarm

Pra=Q (—/—g;hES>
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Detections generated by a footstep template matched filter;
Plot shows semi-analytical forecast of detectability

Plot shows number of sensors having o = 0.9, Pra =107
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Most of the positions in the hall would satisfy the need of at
least 4 detections required by TDOA.
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Localizability performance quantified by means of the
Cramér-Rao Lower Bound (CRLB)

An unbiased estimator of footstep coordinates g has a variance
no better than the CRLB:

Var(6) > FIM™'(6), FIM(6:[6;,0;,...]7) = —E (82 13%%?'9))

FIM: Fisher Information Matrix

i
For TDOA the FIM has the form: FIM = {‘”T%C;A(@} gt {WT%C;A(“:)}

The localization accuracy is constrained by both the
measurement uncertainty (covariance C,) and the cofactor of
Geometric Dilution of Precision (GDOP)
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Geometric Dilution of Precision (GDOP) can be expressed
as ratio relative to other TDOA error sources

GDOP ratio = \/Tr (FIM™')/orpoa  FIM: Fisher Information Matrix

The hall asymmetry of sensor placement does influence GDOP,
but doesn’t fully explain poor localization.
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A key insight comes from understanding the types of
footstep-to-sensor interaction

Footsteps directly above a
girder-mounted sensor have a
clear wave arrival (lower left),
but those that travel laterally
“oross secton view many meters undergo
+—— Accelerometer dispersion, reflections, etc.
o o producing the complicated
arrival wave (lower right)

Concrete Floor Slab

This is why footstep localization
is not a trivial application of
TDOA techniques from wireless
or acoustics literature

Normalized Acceleration

Time [msec] Time [msec]
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Different footstep-to-sensor interactions call for
different arrival time estimation methods

Concrete Floor Slab

< Steel Girder
(cross section view)

<+«—— Accelerometer

0.2

04 F

Normalized Acceleration

-0.6

-0.8 F

Time [msec] Time [msec]
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For footsteps directly above a
sensor the matched filter’s
detection time suffices

For distant footsteps, a method
from seismology (Maeda’85) is
appropriate for arrival time
estimation

Also, a search for the best fit
propagation speed makes TDOA
robust to uncertainty about
building materials
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Proposed approach applied to footsteps on Goodwin 4t
floor Northeast hall gives 0.6 m RMSE
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A person walked a path ( - - - ) marked by tape

Ground truth ( o ) provided by a LIDAR synchronized to the
building sensor system

Estimated positions ( + ) linked by line to ground truth point.
Additional trials in were similar (RMSE 0.54 m to 0.8 m)
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Indoor localization of footsteps to sub-meter accuracy
is feasible. What about occupancy counts, tracking, ...?

How to link a footstep to One sensor’s record of distinct
1 2o footsteps at the same place
the person generating it:

. Hard Sole ] Soft Sole
<
Footwear and gait could g o 0
H A : )
be discriminating features R PP e
1 1
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1 ‘ ‘ . 1 ‘ ‘ :
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8 o 0
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Indoor localization of footsteps to sub-meter accuracy
is feasible. What about occupancy counts, tracking, ...?

How to link a footstep to
the person generating it?

Footwear and gait could
be discriminating features

Eventually the
combination of the
footstep biometrics and
location may pose a
privacy risk
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Subject B Subject A

Subject C

One sensor’s record of distinct
footsteps at the same place
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Closing Remarks

This localization task needs to account for the physics of
footstep-to-sensor interaction and, thus, must do more than
recycle TDOA methods in acoustics and wireless literature

Benefits

Enables a device-free, ambient localization service
Avoids burdening radio spectrum
May facilitate fall detection and localization
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