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• The difficulties of indoor localization by means of GPS or 
cellular-based methods are well known and prompted many 
other approaches:

• UWB, Bluetooth beacons, RFID proximity to RFID readers, 
many Wi-Fi schemes, smartphone accelerometer/gyro INS,…

Why create another technique for indoor localization?
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• The difficulties of indoor localization by means of GPS or 
cellular-based methods are well known and prompted many 
other approaches:

• UWB, Bluetooth beacons, RFID proximity to RFID readers, 
many Wi-Fi schemes, smartphone accelerometer/gyro INS,…

 User must carry some device to enable localization

• Cameras and computer vision algorithms

 Significant privacy concerns

• It would be preferable to offer an ambient localization service 
free of any demands on the building occupants

Why create another technique for indoor localization?
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• Here “smart building” draws from a mature technology 
developed in civil and mechanical engineering:

• Pioneering work by Kuroiwa in the 1960s instrumented 
buildings to measure seismic response

• The footstep localization is an emergent cyber physical system,    
a new role for an existing sensor network

The proposed solution measures footstep vibrations with 
smart building accelerometers for localization
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• Installation of 200+ vibration 
sensors complied with building 
codes for a public building

• The sensors were mounted to 
steel girders supporting  
concrete floor slabs

Virginia Tech’s Goodwin Hall is the smart building for 
validating algorithms created in this research
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• Localization of floor impacts (  ) from an instrumented hammer 
appeared to offer sub-meter accuracy from a conventional 
TDOA algorithm, with suitable sensor choice, geometry, etc.
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Initial testing with conventional TDOA applied to measured 
hammer impacts appeared promising
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Attempting to localize footsteps over larger areas resulted 
in estimation errors of many meters . . . What happened?
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• Initial investigation worked within the framework of 
conventional TDOA

• Detectability: TDOA needs at least 4 detections for 
unambiguous estimates

• Localizability: Both measurement error and sensor 
geometry (“GDOP”) influence accuracy of multilateration
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Attempting to localize footsteps over larger areas resulted 
in estimation errors of many meters . . . What happened?
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Detections generated by a footstep template matched filter

Prior impact measurements 
enable prediction of how 
footstep vibrations attenuate 
with distance 

Given received signal, 
instrument noise and a 
decision threshold        the 
following can be computed

Probability of detection

Probability of false alarm
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• Plot shows number of sensors having 

• Most of the positions in the hall would satisfy the need of at 
least 4 detections required by TDOA.
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Detections generated by a footstep template matched filter;

Plot shows semi-analytical forecast of detectability
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• The localization accuracy is constrained by both the 
measurement uncertainty (covariance CN) and the cofactor of 
Geometric Dilution of Precision (GDOP)

Localizability performance quantified by means of the 
Cramér-Rao Lower Bound (CRLB)

FIM: Fisher Information Matrix

• An unbiased estimator of  footstep coordinates     has a variance 
no better than the CRLB:

• For TDOA the FIM has the form:
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• The hall asymmetry of sensor placement does influence GDOP, 
but doesn’t fully explain poor localization.
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Geometric Dilution of Precision (GDOP) can be expressed 
as ratio relative to other TDOA error sources

FIM: Fisher Information Matrix
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A key insight comes from understanding the types of  
footstep-to-sensor interaction

• Footsteps directly above a 
girder-mounted sensor have a 
clear wave arrival (lower left), 
but those that travel laterally 
many meters undergo 
dispersion, reflections, etc. 
producing the complicated 
arrival wave (lower right)

• This is why footstep localization 
is not a trivial application of 
TDOA techniques from wireless 
or acoustics literature
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Different footstep-to-sensor interactions call for 
different arrival time estimation methods

• For footsteps directly above a 
sensor the matched filter’s 
detection time suffices

• For distant footsteps, a method 
from seismology (Maeda’85) is 
appropriate for arrival time 
estimation

• Also, a search for the best fit 
propagation speed makes TDOA 
robust to uncertainty about 
building materials
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• A person walked a path ( - - - ) marked by tape

• Ground truth ( o ) provided by a LIDAR synchronized to the 
building sensor system

• Estimated positions ( + ) linked by line to ground truth point.

• Additional trials in were similar (RMSE 0.54 m to 0.8 m)
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Proposed approach applied to footsteps on Goodwin 4th

floor Northeast hall gives 0.6 m RMSE
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• How to link a footstep to 
the person generating it?

• Footwear and gait could 
be discriminating features
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Indoor localization of footsteps to sub-meter accuracy 
is feasible.  What about occupancy counts, tracking, …?

One sensor’s record of distinct 

footsteps at the same place
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• How to link a footstep to 
the person generating it?

• Footwear and gait could 
be discriminating features

• Eventually the 
combination of the 
footstep biometrics and 
location may pose a 
privacy risk 
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Indoor localization of footsteps to sub-meter accuracy 
is feasible.  What about occupancy counts, tracking, …?

One sensor’s record of distinct 

footsteps at the same place
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• This localization task needs to account for the physics of 
footstep-to-sensor interaction and, thus, must do more than 
recycle TDOA methods in acoustics and wireless literature

• Enables a device-free, ambient localization service

• Avoids burdening radio spectrum

• May facilitate fall detection and localization
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Closing Remarks

Benefits


