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Background 

 Physical-layer (PHY)  security 
 PHY security can overcome the inherent difficulties 
of cryptographic methods. 
 Most research activities focussed on the issue of 
secrecy rate maximization. 
 It is also an imporatnt problem to characterize the 
tradeoff between the secrecy performance and the 
energy consumption. 

 PHY security and energy efficiency (EE) 
 Secrecy EE (SEE): the ratio of the achievable 
secrecy rate to the total power consumption. 
 considered only in a few existing works, with simple 
system settings (e.g., perfect CSI, one Eve).  

 Main contributions 
 More general channel setting: MISOME wiretap 
channel with imperfect CSI on all links 
 Problem formulation: maximization of the worst-
case SEE (WC-SEE) with secrecy rate constraint 
The optimal covariance matrix is obtained by 
applying the fractional programming and rank 
relaxation methods. 
The rank relaxation is proved to be tight. 

System Model 

 A multi-antenna transmitter (Alice) intends to send 
confidential information to a single-antenna legitimate 
receiver (Bob), in the presence of K multi-antenna 
eavesdroppers (Eves). 

 
 
 

where                         ,                   is the channel response 
between Alice and Bob, Nt is the number of transmit 
antennas employed by the transmitter,                      is the 
channel response between Alice and Eve k, Ne,k is the 
number of transmit antennas employed by Eve, zb and ze,k 
are AWGN, and x is the coded confidential information 
following x~CN(0,Qc). 
 Deterministically bounded CSI error model 

 
 
 

The worst-case secrecy rate 
 
 
 

where Bb and Be,k are the sets of all admissible CSI associated with 
hb and Ge,k, respectively.  

 
 

 Power consumption model [Xu et al. ’13] 
 

where Pc is a constant transmit independent power. 
 Problem Formulation 
Our work focuses on the design of Qc, to maximize the WC-SEE 
with QoS and total power constraints. 
 
 
 
where τs is preset requirement of the worst-case secrecy rate. 

Problem Solving 
  A Dinkelbach Method-based Reformulation 
We first define a parametric problem with respect to λ as follow. 
 
where       is the feasible set of problem (1). 
 
 
 
 
 
 
Our strategy is to optimize (2) and obtain F(λ) with a given λ, and 
employ the Dinkelbach method to seek the optimal λ. 

 
 
Introducing a slack variable β, one can check that (2) is equivalent 
to the following problem (3). 

 
 
 
 
A tight rank relaxation 

 
 
 

By applying Lemma 3, problem (3) can be relaxed as 
 
 
 
 
 
with Frelax(λ) ≥ F(λ). 

 A two-stage reformulation of (4) 
Outer problem 
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Lemma 1 F( λ) is a strictly decreasing and continuous 
function w.r.t.  λ, and it has a unique zero solution. 
Lemma 2 Assume that λ* is the unique zero solution to 
F(λ), then F( λ*) and (1) have the same optimal solution, 
and the optimal objective function value of (1) is  λ*. 
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Lemma 3 The following inequality holds, det(I + A) ≥ 1 + 
Tr(A) for any PSD matrix A. Moreover, the equality holds 
if and only if rank(A) ≤ 1. 
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The inner problem 

 

 

SDP-based Reformulation of the Inner Problem 

Step 1: variable transformation 

Introduce the transformation                                  to rewrite (6) as 

 

 

 

 

Step 2: S-procedure 

 

 

 

 

 

 

 

 

 

Then problem (7) can be transformed into an SDP problem 
given in (8), which can be efficiently solved via CVX. The outer 
problem can be handled via a one-dimensional search. 

Numerical Results 

 Benchmark scheme (worst-case secrecy rate 
maximization, WC-SRM) 

 

 

the resultant SEE 

 

 

Simulation setting 

 Transmit antenna#: Nt=6 

 Eves#: K=2 

 Eves’ antennas#: Ne,k=3 for all k 

 Transmit independent power Pc=7dB 

 Required secrecy rate τs=1.5bps/Hz  

 Channel uncertainty εb= εe,k= ε 

 Average of 100 channel trials 

 

 
 

 

Concluding Remarks 

 The input transmit covariance was optimized to 
maximize the WC-SEE with constrained QoS.  

 By resorting to the fractional programming theory and 
introducing a tight convex relaxation, we manage to recast 
the primal fractional optimization problem as a sequence of 
SDP problems. 

 We proved that our obtained method can admit a rank-
one solution, which guarantees the tightness of the convex 
relaxation. 

Numerical results showed that our proposed WC-SEE 
maximization optimal strategy achieves SEE no less than 
that achieved by the WC-SR maximization optimal strategy. 

 
 
 
 
 
 

Overall Algorithm 
 
 
 
 
 
 
 
 
 
 
 

Tightness proof of the relaxation 
 
Proposition 1 There exist an optimal solution (Qc

*,η*) of problem 
(4), for which rank(Qc

*)≤1, and the optimal Qc
* can be constructed 

by solving a power minimization problem (9). 
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Sketch of proof: Suppose that we have solved (6) with the optimal 
value Eη. Then, we study the power minimization problem below. 
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Problem (9) can be converted into an SDP problem via S-
procedure. The remaining proof consists of two steps: 
Step 1: It can be proved, by contradiction, that the optimal solution 
of (9) is bound to be optimal to (6). Hence, it suffices to prove that 
the optimal Qc of (9) is of rank one. 
Step 2: By checking the Karush-Kuhn-Tucker (KKT) conditions 
of (9), one can verify that the optimal Qc of (9) is of rank one. The 
details are omitted here. Similar proof can be found in [Li et 
al.’13]. 
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Robust WC-SEE maximization
WC-SR maximization

ε
=0.1

ε =0.25

Observations: 
When P≤4dB, both schemes increase with the transmit power 
and achieve identical SEE performance. 
After that, the performance achieved by the WC-SRM scheme 
degrades significantly, since it has used up all power budget. Dinkelbach method  

(8) 

(3) 

via the variable transformation; 
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