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Introduction

Introduction
Background

Main Problems in Big Data Era

Unprecedented large datasets.
Heterogenous data sources.

Submodular Optimization

Rich theoretical and practical features to preprocess massive
data [Liu et. al. 2013].
Limitations on greedy fashion algorithms. [Nemhauser, Wolsey
& Fisher, 1978]

Streaming Algorithms

Memory required for a small portion of data.
Solution provided at the end of data stream.
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Formulation and Main Results

Problem Formulation

Prerequisites

Ground set: V = {1, 2, . . . , n}.
Set function: f : 2V → [0,∞).

Characteristic vector: xS = (xS ,1, xS ,2, . . . , xS ,n), where for
1 ≤ j ≤ n, xS ,j = 1, if j ∈ S ; xS ,j = 0, otherwise.

Marginal gain: ∆f (r |S) , f (S ∪ {r})− f (S).

Submodularity: ∆f (r |B) ≤ ∆f (r |A), for A ⊆ B ⊆ V and
r ∈ V \ B.
Monotone: ∆f (r |S) ≥ 0, for any S ⊆ V and r ∈ V .
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Formulation and Main Results

Problem Formulation

Formulation

Motivation: scientific literature recommendations, new
recommendations, etc.

d-MASK: Aim to MAximize a monotone Submodular set
function subject to a d-Knapsack constraint.

maximize
S⊆V

f (S)

subject to CxS ≤ b.
(1)

b = (b1, b2, . . . , bd)T : d-dimension knapsack constraint vector.
C = (ci,j): ci,j > 0 is the weight of the element j with respect
to the i-th knapsack resource constraint.

d-MASK can be easily standardized such that ci ,j ≥ 1 and
bi = b, for 1 ≤ i ≤ d , 1 ≤ j ≤ n.
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Formulation and Main Results

Related Work and Main Results

Best Performance
Known Algorithms Proposed Streaming Algorithm

Approx.
Factor

Comput.
Cost

Approx.
Factor

Comput.
Cost

1-Knapsack
Constraint

1− e−1

[Sviridenko, 2004]
O(n5) 1/(1 + 2d)− ε O(n log b/ε)

d-Knapsack
Constraint

1− e−1 − ε
[Kulik et. al., 2009]

Polynomial

First to propose an efficient streaming algorithm for d-MASK, with

a constant-factor approximation guarantee;
no assumption on full access to the dataset;
execution of a single pass;
O(b log b) memory requirement;
O(log b) computation complexity per element;
only assumption on monotonicity and submodularity of the
objective function.
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Streaming Algorithm for Maximizing Monotone Submodular Functions

Algorithm

Algorithm 1 d-KNAPSACK-STREAMING

1: m := 0.
2: Q := {[1 + (1 + 2d)ε]l |l ∈ Z}.
3: for v ∈ Q
4: Sv := ∅.
5: for j := 1 to n
6: for i := 1 to d
7: m := max{m, f ({j})/ci,j}.
8: end for
9: Q := {[1 + (1 + 2d)ε]l

∣∣ l ∈ Z, m
1+(1+2d)ε

≤ [1 + (1 + 2d)ε]l ≤ 2bm}.
10: if ci,j ≥ b

2
and f ({j})

ci,j
≥ 2v

b(1+2d)
for some i ∈ [1, d ] then

11: Sv := {j}.
12: break
13: end if
14: if

∑
l∈S∪{j} ci,l ≤ b and ∆f (j|S)

ci,j
≥ 2v

b(1+2d)
for all i ∈ [1, d ] then

15: Sv := Sv ∪ {j}.
16: end if
17: end for
18: end for
19: S := argmax

Sv ,v∈Q
f (Sv ).

20: return S .
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Streaming Algorithm for Maximizing Monotone Submodular Functions

Algorithm

Simpler Version

Algorithm 2 d-KNAPSACK-STREAMING

1: Initialize: Set Q.
2: for v ∈ Q
3: for j := 1 to n
4: Update Set Q.
5: if j is big element then
6: Sv := {j}.
7: break.
8: end if
9: if j satisfies criteria(v) then

10: Sv := Sv ∪ {j}.
11: end if
12: end for
13: end for
14: S := argmax

Sv ,v∈Q
f (Sv ).

15: return S .
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Streaming Algorithm for Maximizing Monotone Submodular Functions

Theoretical Guarantee

Lemma 1

Let

Q =
{

[1 + (1 + 2d)ε]l |l ∈ Z, m

1 + (1 + 2d)ε
≤ [1 + (1 + 2d)ε]l ≤ 2bm

}
for some ε with 0 < ε < 1

1+2d
. Then there exists at least some v ∈ Q such that

[1− (1 + 2d)ε]OPT ≤ v ≤ OPT.

Lemma 2 (Big Element)

Assume v satisfies αOPT ≤ v ≤ OPT, and there exits an element j such that

ci,j ≥ b
2

and f ({j})
ci,j
≥ 2v

b(1+d)
for some i ∈ [1, d ].

f ({j}) ≥ α

1 + 2d
OPT.
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Streaming Algorithm for Maximizing Monotone Submodular Functions

Theoretical Guarantee

Theorem 3

Algorithm 1 has the following properties:

It outputs S that satisfies f (S) ≥
(

1
1+2d
− ε
)

OPT;

It goes one pass over the dataset, stores at most O
(
b log b
dε

)
elements, and

has O
(

log b
ε

)
computation complexity per element.

Theorem 4

Consider a subset S ⊆ V . For 1 ≤ i ≤ d , let ri,s = ∆f (s|S)/ci,s , and
si,1, . . . , si,|V\S| be the sequence such that ri,si,1 ≥ ri,si,2 ≥ · · · ≥ ri,si,|V\S| . Let ki

be the integer such that
∑ki−1

j=1 ci,si,j ≤ b and
∑ki

j=1 ci,si,j > b. And let

λi =
(
b −

∑ki−1
j=1 ci,si,j

)/
ci,si,ki . Then we have

OPT ≤ f (S) + min
1≤i≤d

[
ki−1∑
j=1

∆f (si,j |S) + λi∆f (si,ki |S)

]
.
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Applications

Scientific Literature Recommendations
Problem Setup

Problem setting

A directed acyclic graph G = (V ,E ) with V = {1, 2, . . . , n}.
Vertex in V : an article.

Arc (i , j) ∈ E : paper i cites paper j .

A: the collection of the source papers.

Objective

Select a subset S out of V to quickly detect the information
spreading of A.
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Applications

Problem Formulation

Measurements

Length of the shortest directed path from s to a: T (s, a).
The shortest path length from any vertex in S to a:
T (S , a) , mins∈S T (s, a).
Pre-assigned weight to each vertex a ∈ A: W (a), such that∑

a∈A W (a) = 1.
A given maximum penalty: Tmax.
The expected penalty:
π(S) ,

∑
a∈A W (a) min{T (S , a),Tmax}.

Formulation

maximize
S⊆V

R(S) ,
∑
a∈A

W (a)[Tmax − T (S , a)]+

subject to CxS ≤ b.

(2)
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Applications

Experiment Setup

Constraints Design

Recency

Biased PageRank Score [Gori & Pucci, 2006]

Reference Number

Experiment Dataset [Joseph & Radev, 2007]

Over 20,000 papers in the Association of Computational
Linguistics.

Citation network provided.
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Applications

Experimental Results

Sensitive Analysis Setup
Randomly select five nodes as the source papers.
Set Tmax = 50 and W (a) = 0.2 for each source paper a.

fixed b2 = 10, b3 = 20. fixed b1 = 20, b3 = 20.

fixed b1 = 20, b2 = 10.
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Summary

Summary

The first streaming algorithm for d-MASK problem.

Only a single pass through the dataset required.

Approximation solution with a
(

1
1+2d − ε

)
factor guaranteed

with much lower computation cost.

Practical and efficient way to solve related combinatorial
problem, e.g., scientific literature recommendations.
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