

Inter-cell Interference Coordination for Multi-color Visible Light Communication Networks

Kaixiong Zhou, Chen Gong, Qian Gao and Zhengyuan Xu

Key Laboratory of Wireless-Optical Communications Chinese Academy of Sciences University of Science and Technology of China Hefei, China December 7, 2016

Visible light communication (VLC)

- Large transmission bandwidth
- ≻Security
- >Color resources (by RGB LED)
- Problem of dense deployment
 - >Inter-cell interference
 - Degraded performance of cell-edge users

Inter-cell interference coordination (ICIC)

- >Fractional frequency reuse (FFR)
- Soft frequency reuse (SFR)

ICIC research in VLC

- Single color, downlink OFDMA
- Frequency and power allocation
- ≻Static
- Dynamic Scheduler
 - >Multi colors for multiple access
 - Considering lighting constraint
 - Satisfying user's SINR QoS requirement
 - >Improving the cell-edge user's performance
 - Small penalty of overall throughput

System model

Symbol Representation The signal model Transmitter iUser equipment uLED i D LED Color index kDInter-LED distance Half-power semi-angle $\phi_{1/2}$ $arPhi_{1/2}$ $\phi_{1/2}$ ϕ Emergence angle ϕ_i Field of view (FOV) ψ_c h Incidence angle ψ_i di vertical separation hDistance i and u $d_{i,u}$ A_{pd} PD area FOV $m=-1/\dot{\log}(cos\phi_{1/2})$ Lambert index Refractive index UE nReceiver's FOV 60°

Optical channel gain

$$G_{k,u}^{(i)} = \frac{(m+1)A_{pd}}{2\pi d_{i,u}^2} \cos^m(\phi_i) T_{k,k} g_c(\psi_i) \cos(\psi_i),$$

> Optical filter gain matrix:

$$T = \begin{bmatrix} 0.99 & 0.09 & 0\\ 0.01 & 0.91 & 0\\ 0 & 0.01 & 0.99 \end{bmatrix}$$

Optical concentrator gain:

$$g_c(\psi_i) = egin{cases} rac{n^2}{s \, i n^2 \psi_c}, & 0 \leq \psi_i \leq \psi_c; \ 0, & \psi_i > \psi_c; \end{cases}$$

System model

Two-ring network layout

- Cell-center and cell-edge zones
- Cell-center and cell-edge user equipment (UE)
- RGB colors each cell

SFR

- One color for cell-edge zone
- Other two colors for cell-center zone
- Different colors among adjacent cell-edge zones
- > Constant AC power ratio β (0 < β < 1)

FFR

- > power ratio $\beta = 0$
- One color shared by cell-edge and cell-center UEs

No ICIC

- > power ratio $\beta = 1$
- Colors shared by cell-edge and cell-center UEs

Received SINR

$$\gamma_{u,k}^{(i)} = \frac{(G_{k,u}^{(i)} P_k^{(i)})^2}{I_{sum} + \sigma^2},$$

Noise variance:

$$\sigma^2 = 2qI_{bg}B_k + \frac{4K_bTB_k}{R_f}$$

Symbol	Representation		
$P_k^{(i)}$	AC power of color k in cell i		
I_{sum}	Total received interference		
I'	Dominant interference		
I_0^{cross}	Cross-color interference from current cell		
I_1^{co}	Co-color interference from neighboring cell		
I_{bg} T	Background current		
T	Absolute temperature		
R_{f}	Feedback resistance		
$\dot{K_b}$	Boltzmanns constant		

SINR estimate

$$\gamma_{u,k}^{(i)'} = \frac{(G_{k,u}^{(i)} P_k^{(i)})^2}{I_{sum}' + \sigma^2} = \frac{(G_{k,u}^{(i)} P_k^{(i)})^2}{I_0^{cross} + I_1^{co} + \sigma^2}.$$

Achievable Rate

$$R_{u,k}^{(i)'} = B_k \log_2(1 + \gamma_{u,k}^{(i)'})$$

System model

System design criteria

- Illumination constraint: fixed CIE color space point
 - $\begin{cases} \boldsymbol{C}\boldsymbol{q} &= (x_T, y_T, z_T)^T, \\ \bar{\boldsymbol{P}} &= \kappa \boldsymbol{q}, \end{cases}$

Power constraints: small power variation and linear regime

$$egin{array}{rcl} \kappa &=& min\{rac{P_{1}^{max}}{q_{1}},rac{P_{2}^{max}}{q_{2}},rac{P_{3}^{max}}{q_{3}}\},\ P_{k}^{(i)} &\leq& ilde{P}_{k} riangleq \sqrt{lpha_{k}\eta^{2}ar{P}_{k}^{2}}, k=1,2,3, \end{array}$$

QoS requirement: SINR threshold

(:)	Symbol	Representation
$\gamma_{u,k}^{(i)} \ge \Gamma$	(x_T, y_T, z_T)	Target CIE color space point
u,κ —	C	Linear transform from DC power to CIE space
	$oldsymbol{q},\kappa$	Temporary variables
	$\bar{\boldsymbol{P}} \triangleq [\bar{P}_1, \bar{P}_2, \bar{P}_3]^T \\ [P_k^{min}, P_k^{max}]$	DC power of the three colors
	$[P_k^{min}, P_k^{max}]$	Linear regime of color k
	α_k	peak to average power ratio
	η	Modulation depth
	Γ	SINR thereshold
	\tilde{P}_k	AC power of color k

Dynamic scheduler

Relax power ratio in SFR

$$(\tilde{P}:\beta\tilde{P}:\beta\tilde{P})\to(\beta_1^{(i)}\tilde{P}_1:\beta_2^{(i)}\tilde{P}_2:\beta_3^{(i)}\tilde{P}_3)$$

Distributed LED-level algorithm

Dynamic scheduler

Centralized algorithm

Receive restriction and rate tables from each cell

$$\{\mathcal{T}_{1}^{(i)},\mathcal{T}_{2}^{(i)},\mathcal{T}_{3}^{(i)}\},\,\{R_{\zeta_{1}^{(i)},1}^{(i)'},R_{\zeta_{2}^{(i)},2}^{(i)'},R_{\zeta_{3}^{(i)},3}^{(i)'}\}$$

Form rate matrix and restriction list

$$R_{i,k} = \begin{cases} R_{\zeta_k^{(i)},k}^{(i)'}, & \text{cell } i \text{ asks or be asked for color } k \text{ restriction}; \\ 0, & \text{otherwise}; \end{cases}$$

$$\mathcal{J}_k = \{J_{n_1}, \cdots, J_{n_i}, \cdots, J_{n_k}\}$$

> 0-1 integer programming problem

$$egin{aligned} \max_{Z_{J_i,k}\in\{0,1\}} & \sum_{i=n_1}^{n_k} R_{J_i,k} Z_{J_i,k}, \ & s.t. \; Z_{J_i,k} + Z_{i',k} \leq 1, orall i' \in \mathcal{T}_k^{(J_i)}, orall i \in \mathcal{J}_k, \end{aligned}$$

Color and power allocation $Z_{i,k} = 0: P_k^{(i)} = 0$ $Z_{i,k} = 1$ $P_k^{(i)} = \begin{cases} \beta_k^{(i)} \tilde{P}_k, & \beta_k^{(i)} \leq 1; \\ \tilde{P}_k, & \text{otherwise}; \end{cases}$

Simulation results

Simulation settings

- Sufficiently many round robin scheduling
- User moves toward a random direction at the speed of 1Km/h
- Feedback signal intensity to the serving cell
- Performance benchmarks: SFR, FFR, No ICIC

Parameter	Value
Half-power semi-angle $\phi_{1/2}$	60°
Maximum power per color p_k^{max}	5W
Working color point in CIÈ	(0.344, 0.353, 0.303)
Modulation Bandwidth B_k	1Hz
Vertical separation h	2.15m
PD area A_{pd}	$1cm^2$
PD responsibility R_{pd}	0.28A/W
Refractive index \hat{n}	1.5
Receiver's FOV	60°
Color number K	3
Power ratio β in SFR	1/2
Area ratio A_{rt}	1/3
Modulation factor α_k	5/9
SINR threshold Γ	10dB
Background current I_{bg}	$5100 \mu A$
Absolute temperature \check{T}	295K
Resistance R_f	$6K\Omega$

System parameters

Simulation results

Overall throughput comparison

- Overall throughput of the dynamic scheduler is between those of SFR, FFR and No ICIC.
- > penalty brought by the cell-edge throughput improvement is small.

Simulation results

Cell-edge throughput comparison

- Cell-edge throughput of dynamic scheduler is the largest.
- > QoS requirement (represented by SINR) is satisfied in dynamic scheduler.

Conclusion

- > A SFR-based dynamic scheduler is proposed for ICIC in the multi-color VLC network
- Interfering colors are limited dynamically to coordinate inter-cell interference
- Cell-edge throughput is improved at a small penalty of overall throughput
- > QoS requirement of SINR is satisfied during the dynamic scheduling

Thank you!

Q&A

Inter-cell Interference Coordination for Multi-color Visible Light Communication Networks