$\left(\begin{array}{ll}100 \\ 0\end{array}\right.$

 Inter-cell Interference Coordination for

 Inter-cell Interference Coordination for Multi-color Visible Light Communication Networks

Kaixiong Zhou, Chen Gong, Qian Gao and Zhengyuan Xu
Key Laboratory of Wireless-Optical Communications Chinese Academy of Sciences
University of Science and Technology of China
Hefei, China
December 7, 2016

Outline

■ Background
■System model
■Dynamic Scheduler
■Simulation results

- Conclusion

Background

■Visible light communication (VLC)
$>$ Large transmission bandwidth
>Security
$>$ Color resources (by RGB LED)
\square Problem of dense deployment
$>$ Inter-cell interference
>Degraded performance of cell-edge users
■Inter-cell interference coordination (ICIC)
$>$ Fractional frequency reuse (FFR)
>Soft frequency reuse (SFR)

Background

■ICIC research in VLC
$>$ Single color, downlink OFDMA
>Frequency and power allocation
$>$ Static
■Dynamic Scheduler
$>$ Multi colors for multiple access
$>$ Considering lighting constraint
$>$ Satisfying user's SINR QoS requirement
$>$ Improving the cell-edge user's performance
>Small penalty of overall throughput

Outline

■ Background
■System model
■Dynamic Scheduler
■Simulation results

- Conclusion

System model

$■$ The signal model

Symbol	Representation
i	Transmitter
u	User equipment
k	Color index
D	Inter-LED distance
$\phi_{1 / 2}$	Half-power semi-angle
ϕ_{i}	Emergence angle
ψ_{c}	Field of view (FOV)
ψ_{i}	Incidence angle
h	vertical separation
$d_{i, u}$	Distance i and u
$A_{p d}$	PD area
$m=-1 / \log \left(\cos \phi_{1 / 2}\right)$	Lambert index
n	Refractive index
Receiver's FOV	60°

■ Optical channel gain

$$
G_{k, u}^{(i)}=\frac{(m+1) A_{p d}}{2 \pi d_{i, u}^{2}} \cos ^{m}\left(\phi_{i}\right) T_{k_{i}, k} g_{c}\left(\psi_{i}\right) \cos \left(\psi_{i}\right)
$$

> Optical filter gain matrix:
> Optical concentrator gain:

$$
T=\left[\begin{array}{ccc}
0.99 & 0.09 & 0 \\
0.01 & 0.91 & 0 \\
0 & 0.01 & 0.99
\end{array}\right] \quad g_{c}\left(\psi_{i}\right)= \begin{cases}\frac{n^{2}}{\sin ^{2} \psi_{c}}, & 0 \leq \psi_{i} \leq \psi_{c} ; \\
0, & \psi_{i}>\psi_{c} ;\end{cases}
$$

System model

■ Two-ring network layout
> Cell-center and cell-edge zones
> Cell-center and cell-edge user equipment (UE)
$>$ RGB colors each cell

- SFR

> One color for cell-edge zone
> Other two colors for cell-center zone
> Different colors among adjacent cell-edge zones
$>$ Constant AC power ratio $\beta(0<\beta<1)$

■ FFR

$>$ power ratio $\beta=0$
> One color shared by cell-edge and cell-center UEs

- No ICIC

$>$ power ratio $\beta=1$

> Colors shared by cell-edge and cell-center UEs

System model

■ Received SINR

$$
\gamma_{u, k}^{(i)}=\frac{\left(G_{k, u}^{(i)} P_{k}^{(i)}\right)^{2}}{I_{s u m}+\sigma^{2}}
$$

> Noise variance:

$$
\sigma^{2}=2 q I_{b g} B_{k}+\frac{4 K_{b} T B_{k}}{R_{f}}
$$

Symbol	Representation
$P_{k}^{(i)}$	AC power of color k in cell i
$I_{\text {sum }}$	Total received interference
$I_{\text {sum }}^{\prime}$	Dominant interference
$I_{0}^{\text {cross }}$	Cross-color interference from current cell
$I_{1}^{\text {co }}$	Co-color interference from neighboring cell
$I_{b g}$	Background current
T	Absolute temperature
R_{f}	Feedback resistance
K_{b}	Boltzmanns constant

SINR estimate

$\gamma_{u, k}^{(i)^{\prime}}=\frac{\left(G_{k, u}^{(i)} P_{k}^{(i)}\right)^{2}}{I_{s u m}^{\prime}+\sigma^{2}}=\frac{\left(G_{k, u}^{(i)} P_{k}^{(i)}\right)^{2}}{I_{0}^{c r o s s}+I_{1}^{c o}+\sigma^{2}}$.

■ Achievable Rate

$$
R_{u, k}^{(i)^{\prime}}=B_{k} \log _{2}\left(1+\gamma_{u, k}^{(i)^{\prime}}\right)
$$

System model

■ System design criteria

> Illumination constraint:
fixed CIE color space point

$$
\left\{\begin{array}{cccc}
\boldsymbol{C} \boldsymbol{q} & = & \left(x_{T}, y_{T}, z_{T}\right)^{T}, & \kappa \\
\overline{\boldsymbol{P}} & = & \kappa \boldsymbol{q}, & P_{k}^{(i)}
\end{array} \leq \tilde{P}_{k} \triangleq \sqrt{P_{1}^{\max }}, \frac{P_{2}^{\max }}{q_{1}}, \frac{P_{3}^{\max }}{q_{3}}\right\},
$$

> QoS requirement: SINR threshold

$\gamma_{u, k}^{(i)} \geq \Gamma$	Symbol	Representation
	$\left(x_{T}, y_{T}, z_{T}\right)$	Target CIE color space point
\boldsymbol{C}	Linear transform from DC power to CIE space	
	$\overline{\boldsymbol{P}} \triangleq\left[\bar{P}_{1}, \bar{P}_{2}, \bar{P}_{3}\right]^{T}$	Temporary variables
	$\left[P_{k}^{\text {min }}, P_{k}^{\text {max }}\right]$	DC power of the three colors
α_{k}	Linear regime of color k	
η	peak to average power ratio	
	Γ	Modulation depth
	SINR thereshold	
	AC power of color k	

Outline

■ Background
■System model
■Dynamic Scheduler
■Simulation results

- Conclusion

Dynamic scheduler

■ Relax power ratio in SFR

$$
(\tilde{P}: \beta \tilde{P}: \beta \tilde{P}) \rightarrow\left(\beta_{1}^{(i)} \tilde{P}_{1}: \beta_{2}^{(i)} \tilde{P}_{2}: \beta_{3}^{(i)} \tilde{P}_{3}\right)
$$

■ Distributed LED-level algorithm

Round Robin Scheduling

Power
Ratio
Adjusting

Restriction Table
Preparing

For each cell: serve users in first-in-first-out manner

For each color: set β to satisfy $\gamma^{\prime}=\Gamma$

For each color:
If $\beta>1$, set $\beta=1$, and restrict neighboring cells iteratively until SINR requirement is satisfied

Dynamic scheduler

■ Centralized algorithm

> Receive restriction and rate tables from each cell

$$
\left\{\mathcal{T}_{1}^{(i)}, \mathcal{T}_{2}^{(i)}, \mathcal{T}_{3}^{(i)}\right\},\left\{R_{\zeta_{1}^{(i)}, 1^{\prime}}^{(i)^{\prime}}, R_{\zeta_{2}^{(i)}, 2}^{(i)^{\prime}}, R_{\zeta_{3}^{(i)}, 3}^{(i)^{\prime}}\right\}
$$

> Form rate matrix and restriction list

$$
\begin{aligned}
& R_{i, k}= \begin{cases}R_{\zeta_{k}^{(i)}, k^{\prime}}^{(i)^{\prime}}, & \text { cell } i \text { asks or be asked for color } k \text { restriction; } \\
0, & \text { otherwise } ;\end{cases} \\
& \mathcal{J}_{k}=\left\{J_{n_{1}}, \cdots, J_{n_{i}}, \cdots, J_{n_{k}}\right\}
\end{aligned}
$$

> $0-1$ integer programming problem

$$
\begin{aligned}
\max _{Z_{J_{i}, k} \in\{0,1\}} & \sum_{i=n_{1}}^{n_{k}} R_{J_{i}, k} Z_{J_{i}, k}, \\
\text { s.t. } & Z_{J_{i}, k}+Z_{i^{\prime}, k} \leq 1, \forall i^{\prime} \in \mathcal{T}_{k}^{\left(J_{i}\right)}, \forall J_{i} \in \mathcal{J}_{k},
\end{aligned}
$$

> Color and power allocation

$$
\begin{aligned}
& Z_{i, k}=0: P_{k}^{(i)}=0 \\
& Z_{i, k}=1 \\
& P_{k}^{(i)}= \begin{cases}\beta_{k}^{(i)} \tilde{P}_{k}, & \beta_{k}^{(i)} \leq 1 ; \\
\tilde{P}_{k}, & \text { otherwise } ;\end{cases}
\end{aligned}
$$

Outline

■ Background
■System model
■Dynamic Scheduler
■Simulation results

- Conclusion

Simulation results

■ Simulation settings

> Sufficiently many round robin scheduling
> User moves toward a random direction at the speed of $1 \mathrm{Km} / \mathrm{h}$
> Feedback signal intensity to the serving cell
> Performance benchmarks: SFR, FFR, No ICIC

SYSTEM PARAMETERS

Parameter	Value
Half-power semi-angle $\phi_{1 / 2}$	60°
Maximum power per color $p_{k}^{\text {max }}$	$5 W$
Working color point in CIE	$(0.344,0.353,0.303)$
Modulation Bandwidth B_{k}	1 Hz
Vertical separation h	2.15 m
PD area $A_{p d}$	$1 \mathrm{~cm}^{2}$
PD responsibility $R_{p d}$	$0.28 \mathrm{~A} / \mathrm{W}$
Refractive index n	1.5
Receiver's FOV	60°
Color number K	3
Power ratio β in SFR	$1 / 2$
Area ratio $A_{r t}$	$1 / 3$
Modulation factor α_{k}	$5 / 9$
SINR threshold Γ	$10 d B$
Background current $I_{b g}$	$5100 \mu A$
Absolute temperature T	$295 K$
Resistance R_{f}	$6 K \Omega$

Simulation results

■ Overall throughput comparison

> Overall throughput of the dynamic scheduler is between those of SFR, FFR and No ICIC.
> penalty brought by the cell-edge throughput improvement is small.

Simulation results

■ Cell-edge throughput comparison

> Cell-edge throughput of dynamic scheduler is the largest.
$>$ QoS requirement (represented by SINR) is satisfied in dynamic scheduler.

Outline

■ Background
■System model
■Dynamic Scheduler
■Simulation results

- Conclusion

Conclusion

$>$ A SFR-based dynamic scheduler is proposed for ICIC in the multi-color VLC network
> Interfering colors are limited dynamically to coordinate inter-cell interference
$>$ Cell-edge throughput is improved at a small penalty of overall throughput
$>$ QoS requirement of SINR is satisfied during the dynamic scheduling

Thank you!

Q\&A

