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Abstract—While personal information privacy is threatened by
online social networks, researchers are seeking for privacy pro-
tection tools and methods to assist online social network users. In
this paper, we propose a Trust-Aware Privacy Evaluation frame-
work, called TAPE, aiming to address this problem. Under the
TAPE framework we investigate how to quantitatively evaluate
the privacy risk, as a function of people’s awarenesses of privacy
risks as well as whether people can be trusted by their friends to
protect others’ personal information. Simulations are performed
to illustrate the key concepts and calculations, as well as the
advantages of TAPE. Based on the TAPE framework, we also
propose an unfriending strategy in terms of privacy protection,
which outperforms other existing unfriending strategies.
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I. INTRODUCTION

W ITH the emergence of Online Social Networks (OSN),

people are facing critical privacy risks. In OSN, per-

sonal information can be abused, which will put users into

risks. Researchers identified OSN privacy issues as two cat-

egories, inadvertent disclosure of personal information, and

stalking or backtracking [1], [2]. Krishnamurthy et al. studied

the problem of personal identity information leakage and how

it can be misused by third parties [3]. This kind of information

is able to distinguish an individual’s identity either alone or

when being combined with other information that is linked to a

specific individual, and its leakage will lead to identity theft.

Livingstone [4] demonstrated the risks when young people

make friends and share personal information to express them-

selves online. Real life stories of sensitive information leakage

in OSNs happen frequently. For example, most employers

began to collect potential employees’ information using social

networks. According to a survey released on the EU Data

Protection Day [5], privacy leakage had put people’s careers

on risk.

In the current commercial OSN design, privacy risk is

unavoidable, due to the publicity of OSN [6], [7]. In order

to benefit from the convenience of OSNs, people share per-

sonal information with friends, which makes privacy leakage

possible. When privacy risk is unavoidable, we assume a risk

and attempt to reduce the likelihood of harmful events. Under

the assumption of unavoidable risk, risk analysis becomes

extremely important. According to the National Institute of

Standards and Technology (NIST), risk analysis is defined as

“the process of identifying risk, assessing risk, and taking steps

to reduce risk to an acceptable level” [8]. In [9], In et al.

discussed the advantages of risk analysis, including designing

secure privacy management, monitoring and protecting critical

data, making privacy policies, etc.

Risk analysis can be performed either quantitatively or

qualitatively. Quantitative risk analysis plays a critical role.

The advantages of quantitative risk analysis are discussed

in [10], such as using metrics to evaluate risk parameters,

analyzing risk events, making sophisticated decisions.

Solutions for addressing privacy issue include educational

aspect and technical aspect. For example, in [11], Gundecha et

al. studied privacy issues and protection recommendations, for

the purpose of educating OSN users and raising their privacy

awareness. The technical aspect includes managing privacy

setting [12] and adopting new architectures to build OSNs [13]

[14]. There are also some other categorizations in the litera-

ture. For example, in [15], Jeckmans et al. categorized privacy

research into 5 categories, including raising user awareness,

law and regulations, personal information anonymization, per-

turbing user information, and data encryption. We attempt to

solve privacy issue from another perspective – providing a

quantitative privacy risk analysis framework for OSN users

and researchers. In the OSN privacy research literatures,

quantitatively analyzing privacy risk is still not mature, as

we discuss in Section II. Therefore, we propose a framework

in this paper to quantitatively evaluate the privacy level of

OSN users. We believe that the proposed framework can help

people to understand their privacy situations, raise their privacy

awareness and thus reduce privacy risks.

Quantitatively evaluating privacy level in OSN is a chal-

lenging task. First, quantitative user privacy level is not a

well defined concept in OSNs. Second, human users play

an important role in the personal information leakage. It is

complicated to predict an individual user’s behavior. Third,

personal information can be propagated through both online

and offline media by many ways, such as chatting, emails, in-

stant messages, Facebook postings, picture postings, tweets on

Twitter, etc. Fourth, it is extremely difficult, if not impossible,

to obtain the ground truth about a user’s privacy level, with

which the quantitative evaluation results can be compared.

In this paper, we address the first challenge by proposing

quantitative definition of privacy risk, based on privacy hazard

and its probabilities. This quantitative measurement will lead

to the privacy level calculation tools, which were originally

proposed in the reliability analysis field. To address the second

and third challenge, we have to consider the availability of

social data. Since nobody can monitor the users’ all com-

munication behaviors (online and offline), researchers have to

work on limited data, which can be obtained with reasonable
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costs. In this work, Facebook privacy setting is used as the

primary data source. We also focus on the ‘word-of-mouth’,

which is the primary drive of OSN information diffusion [16].

Although other privacy leakage scenarios, which we discuss in

Section VI-G1, are not considered in this work, the proposed

concepts, including privacy awareness and privacy trust, can

be extended to those scenarios. For the fourth challenge, due

to the lack of ground truth of users’ privacy level, we compare

the proposed scheme with some existing approaches, such as

privacy concern model in [17] and vulnerability analysis in

[11]. In addition, Monte Carlo simulation is employed to verify

the results of privacy risk evaluation.

In this paper, we propose a TAPE (Trust-Aware Privacy

Evaluation) framework for quantitatively evaluating users’

privacy level in OSNs. The TAPE framework contains several

novel aspects.

• It finds the similarity between the reliability analysis in

wireless sensor networks (WSN) and the privacy risk

estimation in OSNs. It sets up the stage for utilizing

reliability analysis tools for privacy analysis.

• It considers the privacy leakage through nodes (i.e. users)

and through links (i.e. friend connections) separately.

Here, the privacy leakage through nodes mainly depends

on the users’ behavior, and we define two metrics in

TAPE to estimate it. The first one reflects whether one

respects others’ privacy, and it is named as Privacy

Awareness. The other one reflects how much one’s friends

trust her/him in terms of not gossiping their information

to others, and it is named as Privacy Trust. The privacy

leakage through a link mainly depends on the relationship

between the two users, in terms of whether one paying

attention to the other’ personal information.

• It proposes the desirable properties of privacy awareness

and privacy trust metrics, as well as specific ways to

calculate them under the guidance of trust management

theory. It is the first time that the privacy trust concept

has been used in evaluating privacy level in OSN.

Besides privacy risk estimation, the TAPE framework has

the ability to conduct sensitivity analysis for friend links,

which is similar to the concept of vulnerability in [11].

Through the sensitivity analysis, an OSN user can understand

how much his/her privacy level is affected by a particular

friend connection. The sensitivity analysis yields a practical

way to improve OSN users’ privacy level.

As a summary, the contributions of this work include:

(a) the TAPE framework, which considers privacy leakage

through nodes and links separately and utilizes traditional

reliability analysis tools, as well as the definition of privacy

risk, in a quantitative way; (b) the privacy awareness and

privacy trust metrics; (c) a privacy awareness algorithm, which

shows a clear advantage over the know algorithm called IRT

[17] in the current literature; (d) the sensitivity analysis metric,

from which we propose an efficient unfriending strategy.

This paper is organized as follows. Related work is dis-

cussed in Section II. TAPE framework is described in Sec-

tion III, followed by discussion of information spreading

probability algorithms and the proposed algorithms in Sec-

tion IV. Privacy assessment and sensitivity analysis metric are

presented in Section V. Experiment results and conclusion are

presented in Section VI and Section VII respectively.

II. RELATED WORK

Privacy in OSN have attracted many attentions. OSN ser-

vice providers allow users to manage who can access which

information (e.g. in Facebook and Google+), and to hide sen-

sitive information to non-connected users (e.g. in Linkedin).

Researchers studied privacy protection from two directions.

Along the first direction, fundamental changes to the current

design of OSN were suggested to enhance users’ privacy.

Felt et al. [14] studied and discussed the privacy concerns

of social network APIs for third parties. Guha et al. [18]

proposed an approach to hide user data by mapping real data

to fake data. Within the first direction, “Privacy by Design”

(PbD) is an important approach. In [19], Wolf et al. opera-

tionalized the concept of PbD through the process of design

and development of OSN, and several social requirements

of OSN were identified to optimize the privacy from a user

perspective. Encryptions are usually used when adopting PbD.

For example, in [13], Baden et al. proposed a new type of

OSNs by using attribute-based encryption to hide user data,

in which symmetric keys are used to encrypt messages and

only the designated friend groups can decrypt the messages. In

[20], Erkin et al. proposed to use homomorphic encryption and

multi-party computation techniques to hide privacy-sensitive

data from the service provider in a recommender system,

without losing the significant usability of data. The second

direction is developing privacy protection tools based on ex-

isting OSNs. For example, Fang et al. [12] developed privacy

wizards to give user recommendation for privacy setting, and

Gundecha et al. [11] proposed an approach to identify a

user’s vulnerable friends. In this paper, we propose to assist

users’ privacy protection by providing quantitative evaluation

of privacy risk and conducting sensitivity analysis for friend

links. Our work belongs to the second direction.

There have been several quantification models for privacy

evaluation in OSN. Alim et al. [21] proposed a vulnera-

bility quantification model which consists of three compo-

nents: individual, relative and absolute vulnerabilities. They

examined the visibility of OSN users’ profiles and computed

the clustering coefficient to compose individual vulnerability.

Based on individual vulnerability, relative vulnerability and

absolute vulnerability were calculated. Besides privacy risk

evaluation, friend vulnerability analysis, also referred to as

sensitivity analysis in this paper, is considered to be a good

way to improve personal privacy. Abdulrahman et al. proposed

a node vulnerability metric [22] and a multi-agent vulnerability

analysis [23] based on the friendship graph of MySpace.

Vulnerability index (V-Index) was proposed to measure how

vulnerable an OSN user is based on her/his friends’ privacy

setting [11]. Privacy setting and its implications were consid-

ered as a primary factor in the existing models. In this paper,

we consider privacy setting as one of the primary factors.

The implications of privacy setting are represented as two

metrics – privacy awareness and privacy trust. Besides privacy

setting, the TAPE framework is able to adopt social tie analysis
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approaches when implementing the module of link information

spreading probability. The network topology and information

diffusion patterns are also considered.

The proposed work is also related to information diffusion

in OSN. Gruhl et al. [24] studied the dynamics of infor-

mation spreading in weblogs. Adar et al. [25] demonstrated

a technique for inferring information propagation through a

blog network by applying epidemic models of information

spreading. Cha et al. [16] studied social cascades over Flickr

social network. Researchers also attempt to build mathematical

model to solve problems of information diffusion in online

social network, such as [26]–[28]. In addition, there are

literatures discussing the relationship between tie strength

and information propagation [29], which is related to the

information spreading probability that is discussed in this

paper. Different from the previous information diffusion work,

the proposed TAPE framework considers information diffusion

in the context of privacy protection, which requires different

set of features and considerations.

III. TRUST-AWARE PRIVACY EVALUATION FRAMEWORK

In this section, the TAPE framework is discussed in details.

We first define privacy risk from the perspective of information

diffusion. The binary decision diagram (BDD) which was

commonly used for system reliability analysis is employed

to calculate privacy risks. The concepts of node information

spreading probability and link information spreading probabil-

ity are proposed.

A. Acronyms

OSN Online Social Network

PIO Personal Information Owner

UD Undesirable Destination

UG Undesirable Group

PA Privacy Awareness

IPA Individual Information Privacy Awareness

PT Privacy Trust

ISP Information Spreading Probability

NISP Node Information Spreading Probability

LISP Link Information Spreading Probability

WSN Wireless Sensor Network

BDD Binary Decision Diagram

BM Birnbaum’s Measure

IRT Item Response Theory

B. Notations

Ij Alice’s type j personal information

UG Alice’s undesirable group related to Ij
UDi Alice’s ith undesirable destination in UG

Vj Privacy risk for Ij
Zj Privacy leakage hazard for Ij
Lj Privacy leakage probability for Ij
ISP(.) Calculation of ISP

S The set of Alice’s privacy setting

sj Alice’s privacy setting for Ij
PAu User u’s PA

GPA(.) Calculation of PA

rank+u,j Proportion of users whose privacy setting for Ij is

looser than user u

Fig. 1: Online social network of Example 1.

rank−u,j Proportion of users whose privacy setting for Ij is

tighter than user u

〈A,B〉 Friend link between A and B

PTu User u’s PT

PTu,fi PT evaluation based on friend fi’s recommendation

GPT (.) Calculation of PT

TA,B Evaluation of how much A trusts B

R+
u Positive recommendations for user u

C. Online Social Network Privacy

Some OSNs (e.g. Facebook and Linkedin) encourage people

to use real names and upload personal information onto a

page known as ‘Profile’. Such personal information is often

accessible by friends directly, and can even flow to thousands

of other people through retweet (e.g. on Twitter), sharing (e.g.

on Facebook) and online communication (e.g. chatting). The

privacy concern in OSNs is well known, but how can we define

the privacy risk in a quantitative way?

Before discussing quantification of privacy risk, we first

look at two examples.

Example 1. Alice is a student, and she posted a piece of

comment complaining her teacher Cris on her social network

site. Alice does not want Cris and other teachers in the same

department to know the comment. Figure 1 shows the example

social network.

Example 2. Alice posted a photo, and she does not want

anyone, except her friends, to see this photo.

Generally, in some scenarios, we want some personal in-

formation to be known only by friends, and in some other

scenarios we don’t want certain personal information to be

viewed by specific people [2]. In Example 1, the personal

information concerned by Alice is her comment on Cris, and

in Example 2, the personal information is her photo. It is

clear that an user has different types of personal information,

and that the privacy concerns depend on the particular type

of personal information. We introduce the notation Iuj to

denote user u’s type j personal information. Without loss

of generality, we present the framework in the context of

protecting Alice’s privacy, i.e. u=“Alice”. Alice is also referred

to as the personal information owner (PIO). In the rest of

the paper, for simplicity, we use Ij to represent IAlice
j .
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Fig. 2: Core structure of the TAPE framework

It is noted that privacy concerns are related to the “undesir-

able viewers”. We define the concept of Undesirable Group

(UG) of Ij , denoted by UGj , as follows. If Alice does not

want her information Ij to be seen by user ui, then ui is put

into UGj , where ui is also called Undesirable Destination

(UD) of Ij . In Example 1, Alice’s UG is {Cris}. In Example 2,

Alice’s UG contains all users except her friends.

In other words, if Ij flows to any UD, Alice considers her

privacy of Ij being violated and privacy leakage happens. In

the rest of the paper, for simplicity, we use UG to represent

UGAlice
j .

Information leaking to different persons has different po-

tential risks to the PIO. Without defining UD, this difference

cannot be captured. The privacy definition based on UD is

a more generalized definition. In this definition, users are

classified into 4 types:

1) personal information owner (e.g. Alice),

2) users who are allowed to access personal information

according to the privacy setting (e.g. Alice’s friends),

3) users to whom the exposure of personal information

causes damage (i.e. the undesirable group)

4) users not belonging to the above three types.

In the existing work, people usually assume that there are no

type 4 users, such as in [11]. The definition of privacy leakage

in this paper becomes the traditional definition as long as the

UD is defined as the complement set of the type 1 and type 2

users. Our definition can also handle the cases that Alice only

concerns that the privacy leaks to a specific set of users, as

seen in Example 1. In other words, our definition can capture

the fact that privacy leaking to different persons has different

damage to the PIO. Such difference is usually not captured by

the privacy setting alone.

D. Privacy Risk and Related Concepts

With the proposed TAPE framework, we aim to answer

two questions: 1) Can we measure the probability of personal

information leakage as a measurement of privacy risk in OSN?

2) How is the personal information leakage related to privacy

risk? In this subsection, we first introduce the key concepts of

the TAPE framework.

In [15], privacy is considered as keeping a piece of infor-

mation in its intended scope. In TAPE, the leakage of personal

information Ij occurs when any users in the undesirable group

UGj view Ij . Here the undesirable group is the same as

the unintended scope in [15]. We assume that Ij can only

be obtained through online information diffusion, which only

occurs through friend connections. This assumption is a result

of the limitation of data, as discussed in Section I. In the

future, if more data are available, such as cell phone contact

data, this assumption can be revised. Due to this assumption,

the UG in Example 2 can be simplified as {all of Alice’s 2-

hop neighbors}. We define privacy leakage probability of Ij ,

denoted by Lj , as the probability that at least one UD views

Ij through information diffusion in the OSN.

Lj = Pr{privacy leakage happens} (1)

In statistics, the notion of risk is often modeled as the

expected value of an undesired outcome [30]. That is

Risk = (probability of the accident occurring)

×(expected loss in case of the accident)
(2)

In the context of OSN, we argue that privacy risk of

information Ij , denoted by Vj can be computed as

Vj = Lj · Zj (3)

where Lj is privacy leakage probability as defined in (1)

and Zj describes the expected loss/damage in case of privacy

leakage. In this paper, we also use another term “privacy level”

to describe an individual’s privacy, and obviously, the lower

privacy risk is, the higher the privacy level is. In TAPE, Zj

is referred to as privacy leakage hazard and is normalized

within interval [0, 1]. We argue that Zj should be determined

by the PIO (e.g. Alice) when the damage of the privacy leakage

is subjective. For instance, in Example 1, Alice may be the best

person who determines the damage if Cris saw her complain

on Facebook? In many cases, PIO is often the best person to

estimate the damage/loss of privacy leakage. In some other

cases, PIO may not have the knowledge to determine the

damage. For example, in Example 2, Alice may not understand

the consequence of revealing her photo to strangers. In such

case, Alice needs assistance to determine the damage, such as

the privacy leakage problem study in [3]. In this paper, we

simply assume that Zj can be provided by PIO. In the rest of
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this paper, when we compare privacy risks, Zj is considered

as constant 1. Based on this assumption, the privacy leakage

probability Lj is equivalent to privacy risk Vj . The core task

in TAPE is to estimate the privacy leakage probability Lj .

E. Toward Privacy Leakage Probability Estimation

In TAPE, a social network is represented by an undirected

diagram. OSN users are the nodes, denoted as ui, and their

friend connections are the links, denoted as 〈um, un〉. As

discussed in the previous section, personal information can

be diffused to unintended recipients through friend links. It is

important to point out that the existence of a link does not

necessarily mean the personal information will be transmitted

through it. For instance, in Example 1, Alice posted a piece

of comment, but some of her friends may not read it. Here

are three typical situations.

• Alice’s friend Bob does not pay attention to Alice’s

posting at all. Alice’s comment does not disseminate to

Bob through the link between Alice and Bob.

• Alice’s friend Bob pay attention to Alice’s posting and

read it. Alice’s comment disseminates to Bob through the

link between Alice and Bob. Then, Bob respects Alice’s

privacy and does not tell others about Alice’s comment.

In this case, Alice’s comment does not disseminate to

others through Bob.

• Bob reads Alice’s comment, and retweets it. Such

retweeting can be seen by all Bob’s friends. In this case,

Alice’s comment disseminates to Bob, and it is possible

to disseminate to others through Bob.

We argue that the privacy leakage probability estimation

problem can be decomposed into two tasks.

1) Task 1: The first task is to estimate the probability

whether a user’s personal information will be dissem-

inated through a particular component c (a link or a

node). In this work, such probabilities are referred to

as information spreading probabilities (ISP), denoted

by ISP(c). The ISP of the link between Alice and Bob

depends on factors such as whether Alice and Bob are

good friends, whether Bob actively communicates with

Alice in OSN, and whether the information is interesting

enough to catch Bob’s attention. The ISP of a node is de-

termined by complicated factors, ranging from knowledge

to personality, which is extremely difficult to quantify or

even understand.

2) Task 2: The second task is to compute the probability of

privacy leakage (i.e. Lj), given the network topology, the

information spreading probabilities of links and nodes,

the PIO (i.e. Alice), and the UG.

In the rest of this section, we first discuss the solution to

the second task (Section III-F), and then present the solution

to the first task (Section IV). Figure 2 shows the core structure

of the TAPE framework.

F. Privacy Analysis and Reliability Analysis

When investigating information diffusion in OSN, we found

reliability graph, which has been used as one of the reliability

(a) Wireless sensor network example

(b) Online social network example

Fig. 3: Similarity between WSN and OSN. In 3a, Sensor A

detects fire, and the detection will be sent to the server through

other sensor nodes. In 3b, Alice (PIO) feels her photos are

improper to be viewed by Eve (UD).

TABLE I: Concepts mapping

Reliability Analysis for WSN TAPE

System reliability Privacy leakage probability

Reliability graph Social graph

Source node Personal information owner (PIO)

Destination Undesirable destination (UD)

Node/edge failure probability 1 - node/link information

spreading probability (ISP)

analysis tools (e.g. WSN reliability), can be adapted to solve

the problem. An example is shown in Figure 3.

In a reliability analysis problem, the system is represented

by a reliability graph, whose links and nodes are assigned

failure probabilities. The system has a source node and a

sink node that is usually a station. If there is no path from

the source to the sink can be established, the system fails.

For example, in a WSN, the nodes are sensors, and the links

are the communication channels. A sensor’s failure probability

depends on its battery, environment temperature, work load,

etc. A communication channel’s failure probability depends on

distance, environment noise, etc. In the context of reliability

analysis, one often needs to estimate the probability that there

is at least one path can be established from the source sensor

to the destination sensor [31].

In the TAPE framework, we have defined the information

spreading probability for nodes and links in the previous

section. This concept is kind of “opposite” to the failure

probability. For example, if node A fails to forward data to

its neighboring nodes with probability x, node A’s failure

probability is x in the context of WSN reliability analysis,
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Fig. 4: An OSN information diffusion example.

Fig. 5: BDD graph of the example in Figure 4

whereas this node’s information spreading probability is 1−x

in the context of privacy analysis. The goal of WSN is

to transmit data successfully, whereas the goal of privacy

protection is to prevent personal information from propagation.

Therefore, in the TAPE framework, we can also define failure

probability of nodes/links as 1− ISP . We propose to use the

binary decision diagram (BDD) method, which is commonly

used in reliability analysis [31]–[33], to solve Task 2 described

in Section III-E. Table I shows the important concepts in

TAPE, as well as the concepts mapping.

A BDD is a directed acyclic graph created based on

Shannon’s decomposition. It is an efficient tool to manipulate

boolean expressions. For example, in Figure 4, Alice is PIO

and Bob is UD. All nodes and links are assigned ISPs. In

order to calculate the information leakage probability Lj , we

first use a boolean expression to represent Lj .

Lj =ISP(e1)ISP(n1)(ISP(e4) + ISP(e3)ISP(n2)ISP(e5))

+ ISP(e2)ISP(n2)(ISP (e5) + ISP(e3)ISP(n1)ISP(e4))
(4)

Then, a BDD graph is constructed based on the reliability

expression. The BDD graph is a binary tree ( Figure 5), each

sub-tree is considered to be a sub-expression. The left sub-

tree of a BDD node represents the expression when the node

successfully spreads information. The right sub-tree represents

the expression when the node fails to spread information.

When traversing from the root to a leaf node, if the leaf node

is a left child, then it gives a information leakage case. Based

on the BDD diagram, we can evaluate Lj using a recursive

method. The details of the BDD approach can be found in

[31].

In this work, BDD is employed to compute the probability

of information diffusion after modification. Due to the large

size of the social network and the high computation cost of

BDD, we adopt a reduced BDD algorithm. In particular, we

set the maximum traversing depth as k times the number of

hops between PIO and UD. For example, when k = 2 and the

UD is 3 hops away from the PIO, the branches longer than 6

(3× 2) are discarded from the BDD graph. In Section VI, we

set k = 2.

G. Summary

By studying the similarity between the reliability analysis

in WSN and the privacy risk estimation, we modify the

BDD method to evaluate information leakage probability. The

concept of node ISP and link ISP are developed. The core

structure of the TAPE is shown in Figure 2. As a summary,

TAPE is presented as a framework to solve task 2 described

in Section III-E. In Section IV, we discuss details of ISP

calculation. Particularly, the metrics of privacy awareness and

privacy trust are proposed for node ISP calculation.

IV. INFORMATION SPREADING PROBABILITY

ALGORITHMS

While most social network information diffusion models

consider the impact of nodes and links together [25], we

argue that information propagation through nodes and through

links should be considered separately. This is why we define

information spreading probability of node (NISP), also

referred to as node ISP, and information spreading prob-

ability of link (LISP), also referred to as link ISP, which

can better describe the information diffusion process. NISP

is the probability that a node will spread others’ information,

and LISP is the probability that a link will be in the path

of information diffusion. NISP and LISP imitate the nature

human communication process in the real world (i.e. offline

social network).

• NISP describes the probability of speaking, i.e. talking

about others.

• LISP describes the probability of listening, i.e. hearing

what is said.

In this section, we focus on the algorithm of NISP, followed

by a brief introduction of the LISP algorithms proposed in

literatures.

A. Node Information Spreading Probability (NISP)

Evaluating NISP of a person is very challenging, because it

is related to one’s knowledge and personality. In the offline

social network, we probably can estimate the NISP of a

person based on experiences if we know this person well.

Obviously, such estimation can be biased and limited, and

most importantly cannot be applied in OSNs due to data

limitation. Instead of resolving a challenging problem in social

science, we propose to examine NISP based on the quantitative

data available in OSNs.

In particular, we propose two metrics that should be used

to estimate NISP – privacy awareness and privacy trust.

1) Privacy Awareness: The first metric is privacy aware-

ness (PA), which depends on a user’s privacy setting. We

argue that privacy setting reflects a user’s privacy protection

awareness, describing whether a user is paying attention to

his/her own privacy. There are many different ways to compute

a user’s PA. In TAPE, PA evaluation is a module. The input

is a set of the user’s privacy setting, which is represented as

Su = {su,j |j = 1, 2, . . . , J} where u is the user and su,j
is the privacy setting for information Ij . Privacy setting has

options {v1, v2, · · · , vM}, in which vn is a looser setting than
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TABLE II: Desirable properties of PA algorithms

Special Cases rank+
1

rank−
1

Desirable PA value when normalizing to [0, 1]
Case 1: Alice’s privacy setting is looser than all others’ 0 ≈ 0 PAAlice ≈ 0
Case 2: Alice’s privacy setting is tighter than all others’ ≈ 1 0 PAAlice ≈ 1
Case 3: Everyone has the same privacy setting 0 0 PAAlice = 0.5
Case 4: Many users (including Alice) have loose setting,
and a few users have tight setting

0 small PAAlice < 0.5, and it should be small, but not too small because
most people share the same opinion as Alice.

Case 5: A few users (including Alice) have tight setting,
and many users have loose setting

big 0 PAAlice > 0.5, and it should be higher than PAAlice in case 7.

Case 6: A few users (including Alice) have loose setting,
and many users have tight setting

0 big PAAlice should be smaller than PAAlice in case 4.

Case 7: Many users (including Alice) have tight setting,
and a few users have loose setting

small 0 PAAlice should be high, but not too high because most people share
the same opinion as Alice.

vm for n < m, and correspondingly, su,j can have a value in

{1, 2, . . . ,M}. For example, in Facebook, v1 = ‘everyone’,

v2 = ‘networks and groups’, v3 = ‘friends of friends’, v4 =
‘friends’, and v5 =‘self’. Let I1 be the photo in Example 2.

Alice’s privacy setting for I1 is ‘friends’, i.e. sAlice,1 = 4.

Without loss of generality, in the rest of this paper, we use

S and sj to represent Alice’s privacy setting set and privacy

setting respectively.

Let PAu represent PA of user u and GPA represent the

adopted PA calculation, then

PAu = GPA(Su) (5)

The TAPE framework can accommodate many PA algo-

rithms. However, what are the design criteria for PA algo-

rithms? Based on the possible distributions of privacy setting

and Alice’s possible adoptions, we identified seven special

cases and the desirable PA values in these special cases in

Table II, which serves as a guidance for the PA algorithm

design. To better understand Table II, we define rank+u,j as the

proportion of users whose privacy setting for Ij is looser than

u, and rank−u,j as the proportion of users whose privacy setting

for Ij is tighter than u. As long as we know the statistics of

users’ privacy setting for Ij and the adoption of u, we can

compute rank+u,j and rank−u,j .

Example 3. Table III shows the statistics of birthday (I1)

privacy setting as an example. Alice allows only her friends

to see her birthday.

In Example 3, s1 = 4, rank+Alice,1 = 0.5+0.4+0.1 = 0.55,

and rank−Alice,1 = 0.1.

In the rest of this section, we look at the insights of spacial

cases in Table II. We assume people can apply privacy setting

for one type of information in Table II. However, it is easy to

extend it to multiple types of information.

Case 1 and Case 2: In fact, these two cases rarely happen

in real life. We use them to demonstrate the extreme cases

in PA calculations. In Case 1, Alice chooses to open her

information in OSN, while others choose to hide it, which

may indicate that the information is sensitive and releasing

this type of information does not benefit the PIOs. In this case,

Alice should get a minimum PA value due to the disclosure

of sensitive information. On the other hand, if Alice chooses

to hide the information, while others open it. It may means

Alice is prudent when deciding to open information. Thus,

Alice should get a maximum PA value in case 2.

TABLE III: An example: privacy setting statistics for birthday

Privacy setting Proportion of users adopting this privacy setting

‘everyone’ 5%
‘networks’ 40%

‘friends of friends’ 10%

‘friends’ 35%

‘self’ 10%

Case 3: Without further evidence, it is difficult to interpret

one’s PA. Therefore, Alice has a neutral PA. In addition, if

an action made by the majority, without further evidence, the

action should get neither a significant negative nor positive

assessment, e.g. neutral PA in TAPE.

Case 4 and Case 5: To see the insight of case 4 and case 5,

we look at an example. Assume many people release birthday

information to friends because they want to remind friends

about their birthdays, even if they know the privacy risk. In

this case, if Alice releases her birthday, her PA should not be

largely reduced. On the other hand, if Alice hides her birthday,

her PA should be relatively high, since in order to gain better

privacy protection, she gives up the opportunity of receiving

more birthday gifts and greetings.

Case 6 and Case 7: Many people using tight privacy setting

may imply that the information is sensitive. If Alice adopts a

loose privacy setting for this type of information, her PA is

low. On the other hand, if Alice adopts a tight setting, she

should get a larger PA but relatively smaller than that in case

5.

We have to point out that Table II may not include all

possible cases. For example, if Alice adopts a tight setting

for birthday and a loose setting for phone number, and Bob

adopts a loose setting for birthday and a tight setting for phone

number, it is difficult to compare Alice’s PA with Bob’s. In

such case, we need more data to make the PA evaluation

more accurate. At current stage, we argue that those desirable

properties in Table II provide a satisfying guidance for the PA

algorithm design.

2) PA Algorithm: In our proposed PA algorithm, individual

information privacy awareness (IPA) is calculated first. IPA

is the PA value calculated from privacy setting of one type of

information. Let IPAu,j denote the IPA of u for Ij .

IPAu,j =
1

2
(rank+u,j − rank−u,j) +

1

2
(6)

where rank+u,j and rank−u,j are defined in Section IV-A1. It

is easy to verify that (6) satisfies the desirable properties in
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(a) General recommendation trust model

(b) Recommendation trust model in TAPE

(c) Multiple recommendations in TAPE trust model

Fig. 6: Privacy Trust model

Table II. As an example, IPAAlice,1 = 0.725 in Example 3.

Obviously, 0 ≤ IPAu,i ≤ 1. In fact, people can develop

more sophisticated calculation to replace (6), according on

the implementation environment and data availability. After

calculating the IPAs for all types of information, the PA of u

is calculated by

PAu =
1

J

J
∑

j=1

IPAu,j (7)

In the literature, there are some approaches proposed to eval-

uate similar metrics. For example, in [17], the Item Response

Theory (IRT) was used for modeling “privacy concern”. In

Section VI-A, we compare the proposed PA algorithm with

IRT privacy concern model.

3) Privacy Trust: We propose another metric to evaluate

how much a person should be trusted in terms of protecting

privacy. Because this metric reflects how much one’s friends

trust her/him in terms of not gossiping their information to

others, it is named as privacy trust (PT). In fact, this type of

trust is very difficult to evaluate based on direct evidence. First,

direct evidence is rarely available, because we cannot wait

someone to commit bad behaviors (e.g. gossip others) before

estimating PT. Second, the clues that people use to determine

whether a person is trustworthy in offline social networks are

usually not available in OSNs. Alternatively, indirect evidence

is used to predict OSN users’ PT. Such indirect evidence can

be established based on recommendations [34]. For example,

Figure 6a shows a typical recommendation based trust model.

If A trusts B, and B gives a recommendation saying that she/he

trusts C, then A is able to develop certain level of trust to C.

In TAPE, we propose to evaluate an individual’s PT based

on implicit recommendations from her/his friends. For exam-

ple, an implicit recommendation for Alice from her friend Bob

is established when Bob allows her to access his personal in-

formation. Moreover, if Bob has a high PA value, it implicitly

tells us that Alice may be trusted not to propagate others’

personal information (Figure 6b). In real life, a person working

on privacy research (e.g. myself) usually has good attention

to the protection of privacy, thus this person has high PA. If I

choose to tell someone my personal information, it means that

I trust this person not to release my personal information to

others. Although such implicit recommendations have noises,

it may be the best resource to compute PT in OSNs.

PT calculation in TAPE is a module whose inputs are PAs

of the user’s friends and trust evaluations that how much the

user is trusted by friends. Let PTu represent PT of u and GPT

represent PT calculation, then

PTu = GPT (PAfriends of u , Tfriends,u) (8)

where Tfriends,u indicates how much u is trusted by friends.

Similar to PA calculation, we argue that the PT calculation

should follow 3 rules.

Rule 1. The level of PT depends on the number of positive

recommendations. The recommendation from a high PA friend

is considered to be a positive recommendation. The more

positive recommendations a user gets, the higher her/his PT

should be.

Rule 2. Negative recommendations should be carefully used.

On the one hand, if a user with low PA trusts Alice, this should

not affect Alice’s PT either positively or negatively. On the

other hand, if a user with high PA does not allow Alice to

view personal information, it is not sufficient to indicate Alice

is trustless.

Rule 3. Although each additional positive recommendation

can increase the PT, such incremental diminishes when the

number of positive recommendations is getting very large.

For example, when positive recommendation number increases

from 3 to 6, PT can increase a lot. However, when the number

increases from 300 to 303, PT should not increase as much

as the earlier case.

4) PT Algorithm: In the literature, there are many trust

models. We adopt a trust model using Beta function to address

concatenation propagation and multi-path propagation of trust

[34].

In the context of PT, the recommendation accuracy (arrow

from A to B in Figure 6a) is replaced by PA of node B, and the

trust value (arrow from B to C in Figure 6a) is the implicit trust

of B towards C, represented by TB,C in TAPE. For simplicity,

in the paper, we set TB,C as a constant value, by assuming

that when two users are connected in OSN, they have certain

chance to see each other’s personal information, but it does

not necessarily mean they have already read or will read that

information. In the future, when more OSN data is available,

such as the nuanced privacy setting, TB,C can be calculated

more accurately.

We use R+
u to denote the set of positive recommendations

for u, i.e. u’s friends whose PA values are higher than a

threshold (ǫ+). The PT calculation we adopt is described as

follows.
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Fig. 7: Node ISP Calculation Diagram

First, we estimate PT through one recommendation path

PTu,fi = PAfiTfi,u + (1− PAfi)(1 − Tfi,u) (9)

where fi ∈ R+
u is ith high PA friend of u. Then the variance

of the estimation of PTu,fi is calculated

σ2
u,fi

=







PTu,fi
(1−PTu,fi

)2

2−PTu,fi

, PTu,fi > 0.5

PT 2
u,fi

(1−PTu,fi
)

1+PTu,fi

, PTu,fi < 0.5
(10)

The PT is calculated using Beta trust model

PTu =
a

a+ b
(11)

where a =
∑|R+

u |
i=1 ai − 1, b =

∑|R+
u |

i=1 bi − 1 and

ai = PTu,fi

(

PTu,fi(1 − PTu,fi)

σ2
u,fi

− 1

)

(12)

bi = (1− PTu,fi)

(

PTu,fi(1− PTu,fi)

σ2
u,fi

− 1

)

(13)

5) Calculation of NISP: PA and PT are surely two impor-

tant factors that determine NISP. However, PA and PT metrics

are not probability values. No theories can be used to compute

NISP from PA and PT. In this work, we adopt a heuristic

approach, which estimates the NISP as a weighted average of

PA and PT,

ISP (u) = w · PAu + (1− w)PTu, (14)

where w is a weight factor between 0 and 1. Here weighted

average is one of the simplest ways to combine PA and PT. In

fact, People can develop more complicated calculation depend-

ing on the implementation environment and data availability.

In the experiments in Section VI, we choose w = 0.5. Figure 7

shows the diagram of the NISP calculation. In the future,

real human users must be involved (e.g. questionnaire) to

understand the relationship among NISP, PA and PT.

B. Link Information Spreading Probability (LISP)

As discussed earlier, LISP of the link between Alice and

Bob depends on whether Bob heard what Alice said. Further-

more, it depends on whether Alice has a strong tie with Bob

and whether the information is interesting enough to catch

Bob’s attention. In the current literature, many works have in-

vestigated social ties [29], [35]. Note that the TAPE framework

can accommodate any algorithms for LISP calculation, as long

as the outcome of LISP calculation is a value between 0 and

1 indicating the probability of information spreading. In this

paper, we do not propose a specific algorithm for calculating

LISP. In the experiments, we adopt a constant value for LISP

and focus on demonstrating the impacts of PA and PT.

V. PRIVACY ASSESSMENT AND PRIVACY IMPROVEMENT

THROUGH TAPE

By evaluating NISP and LISP, and utilizing the reliability

analysis method, TAPE has the ability to assess one’s OSN

privacy level. More importantly, based on the privacy assess-

ment process, TAPE is able to tell people the strategies of

improving privacy level.

A. Privacy Assessment

As discussed in Section III, by utilizing the BDD method

and adopting proper NISP and LISP algorithms, TAPE is

able to evaluate privacy leakage probability from the PIO to

the UD. In real life, people usually want to avoid certain

personal information being viewed by multiple people, which

is the reason why we define undesirable group. Without further

modification, TAPE can solve multiple UD case. Given an

undesirable group UG = {UD1,UD2, . . . ,UDK},K > 1,

the information leakage probability to UG is

LUG = 1−
∏

UDi∈UG

(1− LUDi) (15)

where Li is the privacy leakage probability to UD i. Here,

privacy leakage happens if any one UD gets the information.

B. Privacy Improvement Strategies

The goal of privacy protection in TAPE is to reduce privacy

risk. From a user’s perspective, the most practical strategy is

to block a friend to access certain personal information, also

referred to as unfriending. In TAPE, we develop a method that

can identify the friend link which contributes to the privacy

leakage the most. We adopt Birnbaum’s measure (BM) [36]

to find such a friend link.

Originally, Birnbaum’s measure was used to examine the

sensitivity or importance of a component in reliability graph.

In TAPE, we use it to evaluate the sensitivity of a friend

link. Birnbaum’s measure evaluates the partial derivative of

the leakage probability with respect to LISP of link c.

BM(c) =
∂L

∂ISP(c)
(16)

For the single UD case, the detailed calculation of BM, which

uses the BDD graph, can be found in [36].

We derive Birnbaum’s measure for multiple UD case. By

rewriting (15), we get

log (1− LUG) =
∑

UDi∈UG

log(1− LUDi) (17)

For the right-hand side,

∂

∂ISP(c)

∑

UDi∈UG

log(1− LUDi)

=
∑

UDi∈UG

(

−1

1− LUDi

∂LUDi

∂ISP(c)

) (18)

For the left-hand side:

∂ log (1− LUG)

∂ISP(c)
=

−1

1− LUG

∂LUG

∂ISP(c)
(19)
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Plugin together, the Birnbaum’s measure of c for UG is

BMUG(c) =
∂LUG

∂ISP(c)

=
∑

UDi∈UG

(

1− LUG

1− LUDi

∂LUDi

∂ISP(c)

)

=
∑

UDi∈UG

αiBM i(c)

(20)

where αi = 1−LUG

1−LUDi
is the contribution weight of the ith

UD, and BM i(c) is the Birnbaum’s measure for c when

computing the privacy leakage probability to UD i. Finally,

the unfriending strategy proposed in TAPE is to find a friend

link, which is

c∗ = argmax
c

BMUG(c) (21)

TAPE suggests to block c∗ to improve privacy level.

VI. EXPERIMENT RESULTS AND DISCUSSION

TAPE framework is implemented in Matlab, and the experi-

ments are conducted. The reduction factor of reduced BDD is

2, i.e. k = 2. In PT calculation, PA threshold (ǫ+) is 0.5

and TB,C is 0.7. NISP values are calculated according to

Figure 7. At the beginning of this section, we first do a case

study to demonstrate the calculation of PA, and then we apply

TAPE to two real OSN datasets. The privacy risks and friends

sensitivities are calculated. Several unfriending strategies are

compared.

A. Case Study

We compare two PA algorithms. The proposed PA algo-

rithm, referred to as Rank PA, is described in Section IV-A2.

The comparison algorithm is described in [17], referred to as

IRT. Briefly speaking, this scheme calculates a metric called

“privacy concern” based on privacy settings, by utilizing Item

Response Theory. The goal is to estimate OSN users privacy

concerns toward information sharing.

Since there is no ground truth on what should be the most

“correct” value of PA, in order to demonstrate their major

features, we compare these two schemes in special situations.

Assume Alice has 3 types of information I1,I2 and I3, and

the related privacy settings are s1,s2 and s3. The privacy

setting is binary, either open (represented by 0) or hidden

(represented by 1). The column index in Table IV is the

possible privacy setting. We randomly generate privacy setting

data as follows. For each special situation, we first specify the

proportion of each privacy configuration (e.g. ‘000’, ‘001’,

etc.), and then generate the privacy configuration realities

according to the distribution. 10,000 privacy configuration

realities are generated for each special situation. We conduct

the case studies, and the special situations we investigate are

follows.

Special Situation 1 - Most users (88.91% for I1, 88.63% for

I2 and 89.35% for I3) choose to open all types of information.

Special Situation 2 - Most users (89.32%) hide type 1

information. For type 2 and type 3 information, most user

(88.75% for I2 and 88.92% for I3) open them to public.

Special Situation 3 - Most users (89.02% for I1 and 88.82%

for I2) hide type 1 and type 2 information, and for type 3

information 89.20% users disclose it.

Special Situation 4 - Most users (88.51% for I1, 88.48%

for I2 and 88.85% for I3) hide all types of information.

The PA calculation are shown in Table IV, in which the

proposed PA algorithm is referred to as “Rand PA” and

the comparison scheme is referred to as “IRT z”. We first

investigate the range of each scheme. IRT z has narrow ranges

for the studied situations, although the theoretical range of

IRT z can be (−∞,∞). In order to adopt IRT z in TAPE as

a PA algorithm, non-trivial normalization is needed. On the

other hand, the proposed Rank PA has a range from 0 to 1

as expected. In addition, the neutral value for Rank PA is 0.5,

and neutral value for IRT z is 0. Then, we investigate both

schemes according to desirable properties of PA in Table II

and get follow observations.

1) The majority always get PA values close to neutral for

Rank PA, i.e. “000” of special situation 1, “011” of

special situation 2, “110” of special situation 3 and “111”

of special situation 4. However, when IRT z is used, such

majority behavior cannot be captured.

2) Special situation 1 corresponds to case 4 and case 5 in

Table II. It is seen that both Rank PA and IRT z satisfy

the desirable properties of case 4 and case 5.

3) Special situation 4 corresponds to PA case 6 and PA case

7 in Table II. Rank PA satisfies the desirable properties in

PA case 6 and PA case 7. When look at “000” in special

situation 4, IRT z gives a higher value than the same

privacy setting in special situation 1, which violates the

desirable properties.

4) When investigating column “000” in Table IV, it is

expected that the PA values from top to bottom should

change from neutral to small, because the more people

adopting tight privacy setting may indicate that the infor-

mation is more sensitive and opening it can yield lower

PA values. Rank PA has such trend, while IRT z does

not.

In addition, IRT z is designed for binary privacy setting.

However, real privacy setting usually has more than two

options, such as in Facebook. Additionally, compare to the

proposed Rank PA, IRT z also suffers from higher computa-

tional cost.

B. Datasets

We use two datasets to conduct experiments.

Dataset I contains a small number of users with detailed

privacy setting. In particular, the privacy setting of 514 Face-

book users in the community of University of Rhode Island

(URI) are collected through a survey, and their public friends

relationships are obtained by a crawler. In dataset I, there are

16 types of personal information, such as ‘email address’,

‘mobile phone number’, ‘education’ and ‘status and links’.

Each type has 5 privacy setting options, including ‘everyone’,

‘networks’, ‘friends of friends’, ‘friends’ and ‘self’.

Dataset II contains a large number of users with limited

privacy setting information, constructed by the authors in [37].

It contains about 957,000 Facebook users. There are 4 types of
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TABLE IV: Case study: Rank PA vs. IRT PA

Special Situations
Privacy setting: s1s2s3 (0=open,1=hidden)

000 001 010 100 011 101 110 111

1
Percentage of users adopting this setting 70.50% 8.30% 8.92% 1.19% 8.83% 1.00% 1.10% 0.16%

IRT z -0.0648 0.1337 0.1337 0.3321 0.1337 0.3321 0.3321 0.5305
Rank PA 0.4448 0.6115 0.6115 0.7782 0.6115 0.7782 0.7782 0.9448

2
Percentage of users adopting this setting 8.36% 1.18% 1.05% 0.09% 70.53% 8.68% 8.98% 1.13%

IRT z -0.0169 -0.0018 -0.0018 0.0133 -0.0018 0.0133 0.0133 0.0285
Rank PA 0.3139 0.4806 0.4806 0.6472 0.4806 0.6472 0.6472 0.8139

3
Percentage of users adopting this setting 0.99% 0.17% 8.85% 0.97% 9.09% 0.93% 70.27% 8.73%

IRT z -0.3249 -0.1528 -0.1528 0.0194 -0.1528 0.0194 0.0194 0.1915
Rank PA 0.1856 0.3523 0.3523 0.5189 0.3523 0.5189 0.5189 0.6856

4
Percentage of users adopting this setting 0.11% 1.20% 1.01% 9.17% 1.05% 9.16% 8.98% 69.32%

IRT z -0.0081 -0.0050 -0.0050 -0.0020 -0.0050 -0.0020 -0.0020 0.0010
Rank PA 0.0569 0.2236 0.2236 0.3903 0.2236 0.3903 0.3903 0.5569

TABLE V: Datasets summary

Dataset I Dataset II

# of unique users 514 957,000

Average real degree 215.8 95.2

Average sampled degree 2.1 3.8

Max sampled degree 18 124

# of personal information types 16 4

‘everyone’ ‘open’
‘networks’ ‘hidden’

Privacy setting options ‘friends of friends’
‘friends’

‘self’

personal information, including ‘add as friend’, ‘photo’, ‘view

friends’ and ‘send message’. Each type of information has 2

privacy setting options, ‘open’ and ‘hidden’.

Information of the two datasets is listed in Table V.

C. Privacy Risk

It is well known that the reliability of data transmission can

drop significantly as the distance (i.e. the number of hops)

increases. In the context of privacy protection, does the privacy

risk heavily depend on this distance? We study the relationship

between the privacy risk and the distance from the PIO to UD.

We first randomly pick 100 nodes from dataset I and put

them in the PIO set. In each round of simulation, we pick one

node (without replacement) from the PIO set as the PIO, and

pick another node from the network as the corresponding UD,

which is no more than 6-hop away from the PIO. If the picked

PIO is an isolated node (i.e. degree is 0), we skip it. For each

pair of PIO and UD, we measure the distance, compute the

privacy risk using TAPE, and plot the privacy risk in Figure 8.

Each point represents one pair of PIO and UD. The x-axis

indicates the distance between PIO and UD, and y-axis is the

privacy risk. In this experiment, LISP is chosen from 0.5, 0.8,

0.9, and 0.95. We have the following observations

• As expected, when the distance increases, privacy risk

has a decreasing trend.

• The privacy risk to 1-hop UDs (i.e. friends) can be greater

than the LISP. This is because Alice’s friends not only get

Alice’s information from Alice directly, but also through

other paths. For example, Alice’s friend Bob may not

hear what Alice said, but he could get the message from

Charlie who is another friend of Alice.

• When the distance is small, the privacy risk varies in a

large range. The distance is not a dominating factor. The

PA, PT and network topology jointly determine users’
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Fig. 8: Privacy risk vs. PIO UD distance.

privacy risk. A user who is 3 hops away may be more

likely to obtain Alice’s person information than a user

who is 2 hops away.

• As the LISP decreases, the privacy risk decreases. In the

future work, incorporating the estimation of LISP will

yield even a larger variation in the privacy risk values.

D. The impact of PA and PT

Since the lack of “ground truth” about the real privacy

risk of users, it is hard to compare TAPE with other privacy

evaluation methods that consider different features of the users.

Instead of comparing TAPE with a specific method, we argue

that a prevalent type of privacy study in OSN only focuses on

network topology. We construct a comparison method, referred

to as topology-based method, which uses the BDD to compute

the privacy risk with fixed LISP and NISP. By comparing

TAPE with the topology based method, we will see whether

considering PA and PT metrics reveals more information that

is not captured by considering the topology alone. In the

experiment, we set the LISP to be 0.5, and set the NISP of the

topology based method to be the average of the NISP values

when considering PA and PT.

The experiment setup is similar to that in Section VI-C.

We construct PIO sets for both dataset I and dataset II, and

each set has 100 nodes. In each round of simulation, one node

is picked up (without replacement) from the PIO sets as the

PIO, and another node that is 3 hops away from the PIO

is picked as UD. We calculate the privacy risk using TAPE

and using the topology based method. We define proportional

difference as D = V Topology−V TAPE

V Topology , where V Topology is the
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Fig. 9: Histogram of proportional difference

TABLE VI: Impact of LIST value when comparing TAPE and

the topology-based method

LISP 0.2 0.35 0.5 0.65 0.8

Avg(D) 0.0129 0.0131 0.0130 0.0127 0.0123

std(D) 0.0590 0.0595 0.0592 0.0583 0.0571

privacy risk calculated based on topology, and V TAPE is the

privacy risk calculated by TAPE. The histograms of D for both

datasets are shown in Figure 9. It is seen that the proportional

difference range is from -25% to 5%. Hence PA and PT do

provide additional and useful information beyond the topology.

In addition, it is seen that dataset II shows more concentrated

distribution around 0, and dataset I has a wider range. It is

known that, dataset II has 4 types of personal information

and each type has 2 privacy setting options, while dataset I

has 16 types of personal information and each type has 5

privacy setting options. We argue that the comprehensiveness

of privacy setting can impact the performance of TAPE.

In the topology-based method, we set the LISP to be 0.5 and

the NISP to be the average NISP in TAPE. When choosing

the NISP value, we argue that the NISP setting favors the

topology based method. Particularly, when PA and PT are not

available, it is very difficult to choose a proper NISP value

for the topology based method. By choosing the average NISP
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Fig. 10: TAPE vs Monte-Carlo simulation

value from TAPE, we believe that it will provide a reasonable

NISP estimation for the topology based method. In the rest

of this section, we conduct experiment to study how much

the LISP value can impact the results when comparing TAPE

and the topology-based method. The experiment setup is the

same as the one using dataset I earlier in this section, and we

repeat it by selecting one LISP value from {0.2, 0.35, 0.5, 0.65,

0.8} at one time. The proportional difference D is calculated.

We list the statistics of D in Table VI. The proportional

difference does not change when we select different LISP.

However, we have to point out that smaller LISP values will

give smaller privacy risk estimations, and we already observed

it in Figure 8.

E. Verification of TAPE Calculation

In the previous experiments, the privacy risks are calculated

from LISP and NISP using BDD as described in Section III-F.

In order to verify this calculation, Monte-Carlo simulations are

used and the results are compared with the outputs of TAPE.

The simulation is conducted as follows. At the initial

stage, a node is selected as PIO, and the PIO owns a token,

which represents one type of personal information. During the

simulation stage, we divide the time into T steps. At each step,

every node with a token can pass duplicates of the token to its

neighbors. The probability that node A successfully passes the

token duplicate to its neighbor B is ISP(A) · ISP(〈A,B〉),
where ISP(A) is the NISP of A and ISP(〈A,B〉) is the LISP

of link 〈A,B〉. After T steps, the simulation is terminated. If

there is any UD that obtains a token duplicate, this simulation

is marked as ‘information leakage observed’. By repeating

the simulation N times, we will get N1 ‘information leakage

observed’ simulations, and the simulated privacy risk is N1

N
.

In the experiment, we randomly select 1,000 PIOs from

dataset II, and those whose degrees are less than 2 are

skipped. The 3-hop privacy risks are computed using TAPE.

Corresponding Monte-Carlo simulations are conducted, in

which N = 100 and T = 5. Figure 10 shows the results

of our experiments. It is seen that the simulation justifies

the calculation of TAPE, because a strong linear relationship

between simulated results and TAPE results is observed. It is

noticed that the slop of the curve depends on the number of

simulation steps, i.e. T .
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Fig. 11: Privacy improvement of unfriending

F. Sensitivity Analysis and Unfriending Strategy

Unfriending is suggested in [22], [38]. We propose an

unfriending strategy based on Birnbaum’s Measure, referred

to as TAPE unfriending, which evaluates the partial derivative

of the leakage probability with respect to the LISP of a given

friend connection. In this section, we conduct experiments to

compare TAPE unfriending with 3 unfriending approaches.

1) TAPE: In this approach, the friend link that has the

largest Birnbaum’s measure is blocked and the privacy

improvement is calculated.

2) Friend Degree: Usually, those who are popular in OSNs

are considered to be the critical points in information dif-

fusion. Therefore, we examine the privacy improvement

by blocking the friend with largest degree.

3) V-Index: Vulnerability index was proposed by Gundecha

et. al. [11], which is based on privacy setting of friends.

We use this approach for unfriending, by blocking the

friend with the largest V-Index.

4) Random: We also calculate the privacy improvement by

randomly removing a friend link. This approach helps us

to understand the average case when no friend sensitivity

indicators are available.

The experiment setup is the same as that in Section VI-E.

For each PIO-UD pair, we use above approaches to remove

one friend link and calculate the privacy risk reductions. The

experiment results are shown in Figure 11, in which the x-

axis is the index of PIO-UD pair and y-axis is the privacy risk

reduction. The statistic summary is shown in Table VII. We

can see that TAPE gives the best performance. It is important

to point out that the privacy risk reductions are calculated using

the TAPE framework. It is not surprising that the Birnbaum’s

measure, which is based on TAPE, performs the best. On

the other hand, we show that the other unfriending strategies,

which consider less information, are not as promising as the

proposed TAPE framework.

G. Discussion

We define a probability based definition for privacy risk

(level). Starting from the quantitative definition, the reliability

TABLE VII: Statistic summary of unfriending strategies

Strategy Average risk reduction std.

TAPE 0.076 0.024

Friend degree 0.052 0.039

V-Index 0.046 0.041

Random 0.039 0.039

evaluation method is utilized to calculate one’s privacy risk in

terms of information diffusion. In TAPE, PA and PT are used

to capture OSN users’ privacy protection behaviors. TAPE can

also compute the sensitivity of one’s friend links, which can

assist the user to adopt unfriending strategies. TAPE can be

a starting point of enhance OSN users’ privacy level. Since it

highly depends on data sufficiency, the OSN service providers

who control the most user data could be the best candidates to

implement TAPE, and their users can really benefit from it. In

addition, it is expected that social links (LISP) can also impact

the calculation of privacy level. Real applications should adopt

an LISP algorithm while being implemented.

1) Privacy Leakage beyond one OSN: In TAPE, we assume

that information can only be obtained through information

diffusion within OSN. In practice, information diffusion is a

much more complex process. There are several scenarios of

information diffusion in social networks.

1) Cross-OSN diffusion: People can be active in multiple

OSN platforms. For example, Alice is a friend of Bob on

Twitter. She sees news about Bob on Twitter, and then

she posts some words about the news on Facebook.

2) Offline diffusion: This is the traditional way we spread

information through face-to-face conversation, phone

calls etc.

3) Online-Offline diffusion: Information is propagated

through both online and offline channels. This is the most

common way we spread information in the information

era.

Whereas scenario 2 is well studied in social science, sce-

narios 1 and 3 are challenging. In all the three scenarios, the

concepts of privacy awareness and privacy trust are still valid.

They have a great potential to be adopted in these scenarios

and contribute to a broader study on personal privacy leakage

in a hybrid online-offline world.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a TAPE framework for the quanti-

tative evaluation of users’ privacy risk in OSNs. Mathematical

tools (e.g. statistics, modeling techniques) are used to process

online social network data, and signal processing tools are

utilized in this work. The concepts of privacy awareness and

privacy trust are introduced. Simulations are performed to il-

lustrate the computation of privacy leakage probability, as well

as to demonstrate that TAPE can capture useful information

which was not captured previously. Several unfriending strate-

gies are compared with the Birnbaum’s method of TAPE, and

TAPE gives the best performance. More importantly, TAPE

sets up the stage for utilizing reliability analysis, which is a

well-developed field, to solve privacy risk analysis problems.

Besides BDD, other tools such as sensitivity analysis can

surely benefit privacy research.
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Future work includes developing better PA and PT algo-

rithms, implementation of TAPE as a Facebook application

and performing real user testing.
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