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Motivation

I Compressed Sensing (CS) allows us to reconstruct high
dimensional sparse signals from low dimensional measurements

I CS is promising in resource constrained communication
networks

I Signal reconstruction is not required in many applications

I Spectrum Sensing in Cognitive radios

• Assumption: Only a few PUs are present
• Usage of frequency slots: sparse vector
• Multiple SUs try to detect the presence or absence of PUs
• Decide the zero and non-zero locations of the sparse vector

I Sparsity Pattern Recovery Problem (SPRP)
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I Questions:

• How to approach the problem if the network has additional
restrictions on the resources?

• Can we further compress the compressed measurements?
(1-bit quantization)

• How does the performance of decentralized algorithms
compare to centralized algorithms?

• Can performance be improved with collaboration?

I Goal: Decentralized Algorithms for SPRP using 1-bit CS
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Problem Formulation

I Consider a distributed network with P nodes

I At node p, for p = 1, · · · ,P,

yp = Φp(sp + np).

where Φp ∈ RM×N , sp ∈ RN ,np ∈ RN is i.i.d. Gaussian noise
with covariance matrix σ2

n IN

I sp is K -sparse and is assumed to have same sparse support for
p = 1, · · · ,P with possibly different signal amplitudes

I Element wise quantization of yp

qip = sign(yip) =

{
−1, if −∞ < yip < 0

1, if 0 ≤ yip <∞.

I The matrix of quantized measurement

Q = [q1|q2|...|qP ]
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Binary Iterative Hard Thresholding (BIHT) 1

I BIHT reconstructs the signal from the element-wise quantized
vector

I BIHT aims to decrease the cost function

J (s) = ‖[q� (Φs)]−‖1

where [·]− denote negative function, i.e., [z ]− = z if z < 0
and 0 else.

I k-th iteration of BIHT algorithm

sk = ΘK

(
sk−1 − τ ΦT (sign(Φsk−1)− q)︸ ︷︷ ︸

∈ sub-differential of ‖[q�(Φs)]−‖1

)

where ΘK is the hard-thresholding operator

I Susceptible to noise

I Motivates the use of more measurement vectors
1

“Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors”, L. Jacques et al.,
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Centralized-BIHT (C-BIHT)

I All the measurement vectors are available at the fusion center
(FC)

Y = Φ(S + N), Q = sign(Y).

where S = [s1, · · · , sP ] and N = [n1, · · · ,nP ]
I Decision on sparsity pattern is made at the FC
I Algorithm

I Vulnerable to the failure of FC.
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Decentralized Algorithms

I Avoids the use of FC

I Measurements are sent to and received from one hop
neighbors only

I Embed collaboration and fusion among nodes

I Algorithms can be structured involving two distinct stages

• Information Fusion
• Index Fusion
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Decentralized Algorithms (contd...)

I Network topology is represented as an undirected graph
G = (V,E)

I neigh(i) = {j | (i , j) ∈ E} the set of neighboring nodes of
node i

I Node p has access to the measurement matrix
Qp = [Qneigh(p), qp]

I Let T̂p be local support estimate at node p
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Decentralized BIHT 1 (D-BIHT 1)
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D-BIHT 1

Information Fusion
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D-BIHT 1

Index Fusion
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Modified Decentralized BIHT (D-BIHTm)

I Modified form of D-BIHT 1 algorithm

I For networks with severe restrictions on bandwidth usage

I Information Fusion stage is omitted

I Each node makes decisions based on its own measurements
(Self Decision Stage)

I Followed by Index fusion stage
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Decentralized BIHT 2 (D-BIHT 2)
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D-BIHT 2

Information Fusion
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D-BIHT 2

Index Fusion
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Simulation Results

I Performance Metrics:

Percentage of Sparsity Pattern Recovery

=
# Correct Support Recovered

# Correct Support

Probability of Exact Sparsity Pattern Recovery(PESPR)

=
# all the support estimated

# of run of experiments
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Simulation Results (Contd...)

Figure 1: Percentage of Sparsity Pattern Recovery for D-BIHT 1, D-BIHT 2, D-BIHTm, C-BIHT, BIHT
(SMV) algorithms in a network of Node degree 3 for high SNR (noise variance =0.0004 ) and low SNR (noise
variance = .0625) respectively.
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Simulation Results (Contd...)

Figure 2: Probability of Exact Sparsity Pattern Recovery (PESPR) for D-BIHT 1, D-BIHT 2, D-BIHTm,
C-BIHT, BIHT (SMV) algorithms in a network of Node degree 6 for high SNR (noise variance =.002025) and low
SNR (noise variance =.01) respectively.
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Simulation Results (Contd...)

Figure 3: Percentage of Sparsity Pattern Recovery and Probability of Exact Sparsity Pattern Recovery
(PESPR) for D-BIHT 1, D-BIHT 2, D-BIHTm, C-BIHT, BIHT (SMV) in a network of Node degree 4 for M = 40.
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Conclusion

I Proposed two decentralized algorithms using 1-bit CS

I Strategic collaboration and fusion can lead to improved results

I D-BIHT 1 performs better in the high SNR regime

I D-BIHT 2 performs better in the low SNR regime

I Future work: Theoretical results on performance bounds
and guarantees
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Thank you
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