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Motivations and Basic Ideas
Signal Model: Superposition of parameterized atoms/building-blocks

x =

r∑
k=1

cka(θk)

Different atoms correspond to different applications

I Radar/Seismology/Microscope/MRI

I Ultrasound imaging/Array proc./Dictionary learning/Neural networks
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Line Spectral Estimation
I a(f) = [ej2π(−n)f , ej2π(−n+1)f , . . . , ej2π(n−1)f , ej2πnf ]T , f ∈ [0, 1)

2n+1 equspaced samples of a normalized band limited complex sinusoid

I Sparse recovery problem with a continuous DFT dictionary A = {a(f)}
I Infer the frequencies of a mixture of r complex sinusoids in white noise

y = x? +w =

r∑
k=1

c?ka(f
?
k ) +w

Parameter estimation/Support recovery is very important here!!!

e.x., in radar, parameters
correspond to the position and
velocity information of the
targets!
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The Atomic Norm Minimization Algorithm I

In compressed sensing,
minimize ‖x‖1 subject to y = Ax
often produces a sparse solution.

= + + 

A hyperplane will most likely touch the `1 norm ball at spiky points.
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The Atomic Norm Minimization Algorithm II
X Atomic norm: ‖x‖A = inf{

∑
k |ck| : x =

∑
k cka(fk)} which has an

equivalent SDP characterization.

1. Solve ALASSO for unique primal solution x̂:(
x̂ =

r̂∑
k=1

ĉka(f̂k)

)
= argmin

1

2
‖x− y‖2W + λ‖x‖A (ALASSO)

whose dual optimal solution is

q̂ =
W (y − x̂)

λ

2. Extract the frequencies {f̂k} by solving dual polynomial equation
|Q̂(f)| := |〈q̂,a(f)〉| = 1 as long as we can show the BIP

|Q̂(f)| < 1, f /∈ {f̂k} (Boundedness)

Q̂(f̂k) = sign(ĉk), k ∈ [r̂] (Interpolation)
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The Atomic Norm Minimization Algorithm III

1. How well can ALASSO localize the frequencies?

2. Does ALASSO recovers exactly r frequencies?

V. Duval, G. Peyré. “Exact support recovery for sparse spikes deconvolution.”
C. Fernandez-Granda. “Support detection in super-resolution.”
G. Tang, B. Bhaskar, B. Recht. “Near minimax line spectral estimation.”
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The Atomic Norm Minimization Algorithm IV

1. Error bound matches CRB

2. Recover exactly r frequencies

Q. Li, G. Tang. “Approximate support recovery of atomic line spectral estimation: A tale of resolution and precision.”
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Main Contributions I
I Noise is Gaussian with variance σ2

I Noise level is measured by γ0 := σ
√

logn
n

Theorem (Li & Tang, 2016)

Suppose

I SNR as measured by |cmin|/γ0 is large.

I The dynamic range of the coefficients is small.

I Regularization parameter λ is large compared to γ0.

I The frequencies are well-separated.

Then w.h.p. we can extract exactly r parameters from x̂ or q̂, which satisfy

max |c?k||f̂k − f?k | = O(γ0/n) = O(

√
log n

n3/2
σ)

max |ĉk − c?k| = O(λ) = O(

√
log n

n
σ)

Q. Li, G. Tang. “Approximate support recovery of atomic line spectral estimation: A tale of resolution and precision.”
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Main Contributions II

Comparison with CRB, MUSIC, and MLE.

I Only asymptotic bounds available when the snapshots number T →∞.

I Our algorithm: work for single snapshot, i.e., T = 1.

I CRB: O(
σ2

T |c|2n3
)

I Atomic: O(
σ2 log n

|c|2n3
)

I MLE: O(
σ2

T |c|2n3
+

σ4

T |c|4n4
)

I MUSIC: O(
σ2

T |c|2n3
+

σ4

T |c|4n4
)

P. Stoica, A. Nehorai. “MUSIC, maximum likelihood, and Cramer-Rao bound.”
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Proof by Primal-Dual Witness Construction

I The unique primal optimal solution is x̂ =
∑r̂
k=1 ĉka(f̂k).

I The unique dual optimal solution is q̂ =W (y − x̂)/λ satisfying BIP.

I They certify the optimality of each other.

1. Fix r̂ = r and construct the primal candidate solution by solving

{f̂k}, {ĉk} = argmin
{fk},{ck}

1

2
‖y −

r∑
k=1

cka(fk)‖2W + λ

r∑
k=1

|ck|. (NLASSO)

2. Run gradient descent initialized by true parameters {f?k}, {c?k}.
3. Construct the primal candidate x̂ =

∑r̂
k=1 ĉka(f̂k) by {f̂k}, {ĉk}

4. Show W (y − x̂)/λ satisfies BIP.

M. Wainwright. “Sharp thresholds for high-dimensional and noisy sparsity recovery using constrained quadratic programming (Lasso)”
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Numerical Experiment

1. SNR as measured by |cmin|/γ0 is large.

2. The dynamic range of the coefficients is small.

3. Regularization parameter λ is large compared to γ0.

4. The frequencies are well-separated.
Succress rate
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Setup:

I n = 130

I |c?k| = 1

I Separation ≥ 2.5/n

Success means:

I maxk |c?k||f̂k − f?k | ≤
γ0
2n

I maxk |ĉk − c?k| ≤ 2λ
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