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Motivations and Basic Ideas

Signal Model: Superposition of parameterized atoms/building-blocks

X = Z Cka(ek)
k=1

Different atoms correspond to different applications

» Radar/Seismology/Microscope/MRI

» Ultrasound imaging/Array proc./Dictionary learning/Neural networks
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Line Spectral Estimation
> a(f) = [ej27r(fn)f’@j27r(fn+1)f, . ,,ej%(nfl)f’ej%nf}T’f €[0,1)
2n + 1 equspaced samples of a normalized band limited complex sinusoid
» Sparse recovery problem with a continuous DFT dictionary A = {a(f)}
> Infer the frequencies of a mixture of r complex sinusoids in white noise

T
y=x"+w=) ca(fi)+w
k=1

Parameter estimation/Support recovery is very important here!!!

e.x., in radar, parameters
correspond to the position and
velocity information of the
targets!




The Atomic Norm Minimization Algorithm |

In compressed sensing,
minimize ||x||; subject to y = Ax = & + = + O
often produces a sparse solution.

A hyperplane will most likely touch the £; norm ball at spiky points.




The Atomic Norm Minimization Algorithm Il

V" Atomic norm: ||x||4 = inf{}", |cx| : x = >, cra(fx)} which has an
equivalent SDP characterization.

1. Solve ALASSO for unique primal solution X:

R S 1
(x = Z cka(fk)> = argmin §||X —vyl& +Alxlla  (ALASSO)
k=1

whose dual optimal solution is

W(y — %)

q= \

2. Extract the frequencies {fk} by solving dual polynomial equation
|Q(f)| := [{a,a(f))| =1 as long as we can show the BIP

QNI <1, f¢{fi} (Boundedness)
Q(f1) = sign(&), k € [7] (Interpolation)



The Atomic Norm Minimization Algorithm Il

1. How well can ALASSO localize the frequencies?
2. Does ALASSQO recovers exactly r frequencies?
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V. Duval, G. Peyré. “Exact support recovery for sparse spikes deconvolution.”
C. Fernandez-Granda. “Support detection in super-resolution.”
G. Tang, B. Bhaskar, B. Recht. “Near minimax line spectral estimation.”
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The Atomic Norm Minimization Algorithm IV

1. Error bound matches CRB

2. Recover exactly r frequencies
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Q. Li, G. Tang. “Approximate support recovery of atomic line spectral estimation: A tale of resolution and precision.”



Main Contributions |

» Noise is Gaussian with variance o2

logn
n

> Noise level is measured by vy := o

Theorem (Li & Tang, 2016)
Suppose

> SNR as measured by |cmin|/70 is large.
» The dynamic range of the coefficients is small.
> Regularization parameter \ is large compared to 7.
» The frequencies are well-separated.
Then w.h.p. we can extract exactly r parameters from X or q, which satisfy

- V1
max || fi = £i| = O(r0/n) = O(*2570)

max|é — ci = O() = O(y/ 28"

HJ)

Q. Li, G. Tang. “Approximate support recovery of atomic line spectral estimation: A tale of resolution and precision.”



Main Contributions Il

Comparison with CRB, MUSIC, and MLE.
» Only asymptotic bounds available when the snapshots number 7" — oc.

» Our algorithm: work for single snapshot, i.e., T' = 1.

o2
RB: O(=—5—
> ¢ O(T|c|2n3)
. a?logn
» Atomic: O(W)
o? ot
MLE:
g O(T|c|2n3 * T|c|4n4)
2 pt
MUSIC:
> MUSIC O(T|c|2n3 * T|c\4n4)

P. Stoica, A. Nehorai. “MUSIC, maximum likelihood, and Cramer-Rao bound.”



Proof by Primal-Dual Witness Construction

» The unique primal optimal solution is x = 2221 éralfr).
» The unique dual optimal solution is ¢ = W(y — %)/ satisfying BIP.
» They certify the optimality of each other.

1. Fix # = r and construct the primal candidate solution by solving

{fi}, {éx} = argmin flly cha fr) ||W+)\Z|ck| (NLASSO)

(i} {ex} 2
2. Run gradient descent initialized by true parameters {f7}, {c}}.
3. Construct the primal candidate x = 22:1 éra(fr) by {fe}, {é}
4. Show W (y — %)/ satisfies BIP.

M. Wainwright. “Sharp thresholds for high-dimensional and noisy sparsity recovery using constrained quadratic programming (Lasso)"



Numerical Experiment

1. SNR as measured by |cmin|/70 is large.
2. The dynamic range of the coefficients is small.

3. Regularization parameter A is large compared to ~p.

4. The frequencies are well-separated.

Setup:
» n =130
> Jet =1

> Separation > 2.5/n

Success means:

> maxy |C£|\fk —frl <32

> maxy |éx — CZ| <2A
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