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Our Goal

\E

« Detect and classify coarse hand gestures using RADAR
— Compact, low power
— All-lighting, all-weather performance
— NLOS capable operation

« Targeting distinct hand gestures involving motion
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Amplitude

Types of Radar

« Two broad categories: pulsed and continuous wave (CW)
— Pulsed radar directly measures time-of-flight to compute distance

— CW radar indirectly measures distance through phase or frequency changes
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FMCW Radar

Single chirp

s(t) = exp(j2rf,t + juBT,t%)
Down-converted response of a point target with moving with constant
velocity v starting at some range R,.

47 (BR,
x(n,m) =Texp|j —\7 nT, + vf.mT,
r

0
— For nth sample in mth chirp

Describe a group of point targets via 2D DFT:

M-1N-1 nk
omw
X(k,w) = z z x(n, m) exp <]27‘[W> exp (]2717)
m=0n=
« Resulting pixel resolution
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Model Signature

Example Range-Velocity View
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Real Signhature

Velocity [m/s]

Range-Velocity Map
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Micro-Doppler

« Reality complicates matters
— Surface composed of point targets
— Multiple reflections, continuous internal scattering
— Time-varying configuration, spatially diverse parameters

* Most relevant effect: micro-Doppler

— Velocity signature associated with composite targets experiencing non-
uniform motion

— Difficult to characterize for all but the most trivial of configurations

W3 TEXAS INSTRUMENTS



Processing Step 1

| Input B_uﬂ‘er |
l Range FFT

L1 1

.', Transpose and store

[

FFT and store
Velocity-gate and store
in Doppler Buffer
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Processing Step 2
Doppler Buffer

Velocity

Velocity Buffer

Range

Resulting data forms “Velocity-Energy” measurement for recognition
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Gesture Dictionary

Time-Velocity Plot
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Gesture Dictionary (2)

Velocity [mys]

Time-Velocity Plot
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Hidden Markov Models

Conditional Observation

Hidden Distributions \ector
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Data Collection Parameters

4 GHz bandwidth starting at 76 GHz (3.75 cm range resolution)

1022 chirps with ~100us chirp interval per frame (0.1 sec)
— Plus ~0.2 sec dead time between frames

128-point velocity vector, one for each bin (~2 cm/s velocity resolution)

30, 15, or 10 frame “chunks”
— Arbitrary segmentation used for both training and classification
— Uninformed segmentation, no “markers” or silence detection
— ~3,000 chunks per gesture collected

Markov Model parameters

— 5 states for each gesture model

— 1 or 2 gaussian mixtures for each state

— Diagonal covariance matrix for observation vector (implies independence)

Optional feature extraction/lossy compression algorithm
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Feature Extraction

« 128-point observation vectors (one velocity-energy buffer)
« Lower dimension observation vector is cheaper to classify
— Good results if I(Y; £(Y)) is suitably large

« Due to PSF, FFT windowing, and hand structure, V-E vectors have
spatial correlation

— V-E vectors might be seen as a sum of Gaussian functions,

\ (n — up)?
_ 2 : =
f[n] - - Wi eXp( O_lz )

v[n] =n[n] + f[n]
— Then, the feature vector z is found as the parameters {w;, u;, o;} that
minimize the L2 distance between f (2) and the observation vector,

= (5-f) (3-)
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Classification Results

128-point vectors 10-point vectors
« 30 frames « 30 frames

— 1 GMM: 82.3% — 1 GMM: 83.3%

— 2 GMMs: 87.9% — 2 GMMs: 88.9%
« 15 frames: « 15 frames:

— 1 GMM: 81.5% — 1 GMM: 82.4%

— 2 GMMs: 84.8% — 2 GMMS: 87.5%
« 10 frames: e 10 frames:

— 1 GMM: 79.0% — 1 GMM: 75.85%

— 2 GMMs: 83.1% — 2 GMMs: 81.7%
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Conclusions

« Radar-based gesture recognition is feasible

« Learn from speech recognition

— Previous work in activity classification focused on classification without
modeling

— Gestures can be explained using Hidden Markov Models

 Future work
— More gesture data collection
— Informed HMM design for gestures
— Dealing with variation (physical size, gesture speed, viewing angle)
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Extra Slides
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Micro-Doppler in FMCW

« Bjorklund, S.; Johansson, T.; Petersson, H., Evaluation of a micro-Doppler
classification method on mm-wave data, 2012 IEEE Radar Conference
(RADAR), pp.0934,0939, 7-11 May 2012

 Gait identification at 77 GHz (150 MHz BW)
« Uses STFT to compute micro-Doppler signature

« Compute “Cadence Velocity Diagram (CVD)” by Fourier Transform over
time for each velocity

« Construct feature vector from M peaks in CVD and corresponding
velocities

« Use SVM classifier to match against training set
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Micro-Doppler Signatures
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Fig. 2: A person creeping with negative Doppler. The 77 GHz Fig. 4: A person running with negative Doppler. The 77 GHz
SIRS 77 radar. The color shows power in dB. [runatr101942] SIRS 77 radar. The color shows power in dB. [runatr1019d2]

From “Evaluation of a micro-Doppler classification method on mm-\Wave data”
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Published Classification Results
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Fio. 10: Classificati il fusi , b d 11: Classification result (confusion matrix) with true
1g. 10 *assilication result (COI.] uston matrix) with true M and estimated classes. The labels above the plot should be
estimated classes. Number of training sequences: 41 (walk), 8 | _ . )
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From “Evaluation of a micro-Doppler classification method on mm-Wave data”
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Feature Extraction Algorithm
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Feature Extraction Algorithm
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Feature Extraction Algorithm
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Feature Extraction Algorithm
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Original V-E Plot

Original Measured Data
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Reconstructed V-E Plot

Reconstructed Data From Gaussian Fit
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