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Our Goal 

• Detect and classify coarse hand gestures using RADAR 

– Compact, low power 

– All-lighting, all-weather performance 

– NLOS capable operation 

• Targeting distinct hand gestures involving motion 
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Types of Radar 

• Two broad categories: pulsed and continuous wave (CW) 

– Pulsed radar directly measures time-of-flight to compute distance 

– CW radar indirectly measures distance through phase or frequency changes 
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FMCW Radar 

• Single chirp 

𝑠 𝑡 = exp⁡(𝑗2𝜋𝑓𝑐𝑡 + 𝑗𝜋𝐵𝑇𝑟𝑡
2) 

• Down-converted response of a point target with moving with constant 

velocity 𝑣 starting at some range 𝑅0. 

𝑥 𝑛,𝑚 = Γexp 𝑗
4𝜋

𝑐0

𝐵𝑅0
𝑇𝑟
𝑛𝑇𝑠 + 𝑣𝑓𝑐𝑚𝑇𝑟  

– For 𝑛th sample in 𝑚th chirp 

• Describe a group of point targets via 2D DFT: 

𝑋 𝑘,𝑤 =   𝑥 𝑛,𝑚 exp 𝑗2𝜋
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• Resulting pixel resolution 

Δ𝑅 =
𝑐0
2𝐵
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡Δ𝑣 =

𝑐0
2𝑓𝑐𝑀𝑇𝑟
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Model Signature 
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Real Signature 
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Micro-Doppler 

• Reality complicates matters 

– Surface composed of point targets 

– Multiple reflections, continuous internal scattering 

– Time-varying configuration, spatially diverse parameters 

 

• Most relevant effect: micro-Doppler 

– Velocity signature associated with composite targets experiencing non-

uniform motion 

– Difficult to characterize for all but the most trivial of configurations 
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Processing Step 1 
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Processing Step 2 
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Resulting data forms “Velocity-Energy” measurement for recognition 



Gesture Dictionary 
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Hidden Markov Models 
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Data Collection Parameters 

• 4 GHz bandwidth starting at 76 GHz (3.75 cm range resolution) 

• 1022 chirps with ~100𝜇𝑠 chirp interval per frame (0.1 sec) 

– Plus ~0.2 sec dead time between frames 

• 128-point velocity vector, one for each bin (~2 cm/s velocity resolution) 

• 30, 15, or 10 frame “chunks” 

– Arbitrary segmentation used for both training and classification 

– Uninformed segmentation, no “markers” or silence detection 

– ~3,000 chunks per gesture collected 

• Markov Model parameters 

– 5 states for each gesture model 

– 1 or 2 gaussian mixtures for each state 

– Diagonal covariance matrix for observation vector (implies independence) 

• Optional feature extraction/lossy compression algorithm 
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Feature Extraction 

• 128-point observation vectors (one velocity-energy buffer) 

• Lower dimension observation vector is cheaper to classify 

– Good results if 𝐼 𝑌; 𝑓 𝑌  is suitably large 

• Due to PSF, FFT windowing, and hand structure, V-E vectors have 

spatial correlation 

– V-E vectors might be seen as a sum of Gaussian functions, 

𝑓 𝑛 = 𝑤𝑙 exp −
𝑛 − 𝜇𝑙

2

𝜎𝑙
2

𝐿

𝑙=1

 

𝑣 𝑛 = 𝜂 𝑛 + 𝑓[𝑛] 

– Then, the feature vector 𝑧  is found as the parameters {𝑤𝑙, 𝜇𝑙 , 𝜎𝑙} that 

minimize the L2 distance between 𝑓 𝑧  and the observation vector, 

𝑒2 = 𝑣 − 𝑓 
𝑇
𝑣 − 𝑓  
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Classification Results 

128-point vectors 

• 30 frames 

– 1 GMM: 82.3% 

– 2 GMMs: 87.9% 

• 15 frames: 

– 1 GMM: 81.5% 

– 2 GMMs: 84.8% 

• 10 frames: 

– 1 GMM: 79.0% 

– 2 GMMs: 83.1% 

 

 

10-point vectors 

• 30 frames 

– 1 GMM: 83.3% 

– 2 GMMs: 88.9% 

• 15 frames: 

– 1 GMM: 82.4% 

– 2 GMMS: 87.5% 

• 10 frames: 

– 1 GMM: 75.85% 

– 2 GMMs: 81.7% 

 

15 



Conclusions 

• Radar-based gesture recognition is feasible 

• Learn from speech recognition 

– Previous work in activity classification focused on classification without 

modeling 

– Gestures can be explained using Hidden Markov Models 

• Future work 

– More gesture data collection 

– Informed HMM design for gestures 

– Dealing with variation (physical size, gesture speed, viewing angle) 
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Extra Slides 
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Micro-Doppler in FMCW 

• Bjorklund, S.; Johansson, T.; Petersson, H., Evaluation of a micro-Doppler 

classification method on mm-wave data,  2012 IEEE Radar Conference 

(RADAR), pp.0934,0939, 7-11 May 2012 

 

• Gait identification at 77 GHz (150 MHz BW) 

• Uses STFT to compute micro-Doppler signature 

• Compute “Cadence Velocity Diagram (CVD)” by Fourier Transform over 

time for each velocity 

• Construct feature vector from 𝑀 peaks in CVD and corresponding 

velocities 

• Use SVM classifier to match against training set 
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Micro-Doppler Signatures 
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From “Evaluation of a micro-Doppler classification method on mm-Wave data” 



Published Classification Results 
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From “Evaluation of a micro-Doppler classification method on mm-Wave data” 



Feature Extraction Algorithm 
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Feature Extraction Algorithm 
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Feature Extraction Algorithm 
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Original V-E Plot 
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Reconstructed V-E Plot 
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