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PCA Classification
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I Classify images according to the digits handwritten on them

I Perform PCA ⇒ Keep first few coefficients ⇒ Apply linear classifier

PCA
Linear

Classifier

Image
n = 784

few PCA
coefficients
k = 20 {0, 1}
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PCA Classification
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I Few PCA coefficients ⇒ Problem is inherently lower-dimensional

I Improves classification task ⇒ Low-pass filter to remove noise

I Lower-dimensional representation can also save computational cost
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Computational Cost
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I Note that in performing PCA we need the complete image

I However, there are pixels that do not contribute to classification

⇒ Pixels on the border of the image, for example

I And there are pixels that are more important for classification

⇒ Pixels that are white in one image but black in the other
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Sampling
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I Few nonzero PCA coefficients ⇒ Bandlimited signal ⇒ Sampling

I Subspace representation on covariance graph (not all pixels are useful)

⇒ Linear combination of a few eigenvectors weighted by PCA coeff.

I Extend to arbitrary graphs ⇒ Sampling of bandlimited graph signals

I Design a classifier to operate on the samples ⇒ Reduce dimensionality
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Rethinking Sketching as Sampling

I Sketching ⇒ Reduce dimensionality of linear transformations

I Projection on a lower-dimensional subspace ⇒ Smaller size matrix

⇒ Matrix sketch retains the most outstanding characteristics

I Smaller matrix operates on smaller vector to compute the result

⇒ Project vector on a lower-dimensional subspace ⇒ Sampling

I Jointly design sampling of signal and sketching of linear transform

⇒ Obtain approximate solution by operating only on few samples
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Sampling of Graph Signals

I Graph signals defined on top of a graph G = (V, E ,W) with n nodes

I Irregular support captured by normal graph shift operator S = VΛVH

I Define the graph Fourier transform (GFT) x̃ = VHx

⇒ Linear combination weighted by GFT coefficients x = Vx̃ (iGFT)

I Bandlimited graph signal ⇒ x̃ = [x̃k ; 0n−k ] with k � n ⇒ x = Vk x̃k

⇒ Active eigenbasis of vectors Vk = [Vk , 0n×(n−k)]

I Signal as a linear combination of few elements in Vk ⇒ Sampling
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Sketching

I Estimate the input to a linear transform by measuring the output

⇒ The model is x = Hy, with H ∈ Rn×m and where n� m

⇒ LS solution ⇒ Computationally costly (pseudo-)inverse

I Traditional sketching ⇒ Reduce dimension of the linear problem

I Compress H and x ⇒ KH and Kx, K ∈ Rp×n random, p � n

⇒ Random projection on a lower-dimensional subspace

⇒ Solution of smaller problem miny ‖(KH)y − (Kx)‖2
2 ⇒ Faster

I Design K such that KH and Kx retains important traits of the problem

⇒ Then, solving for (KH,Kx) yields a good approximation

I We consider a deterministic design to obtain a smaller matrix sketch
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Operating Conditions

I Sequence of signals to be processed by the same linear transform

⇒ Matrix H is big ⇒ Computationally intensive to operate with

I Realizations of a bandlimited graph random process ⇒ Rx singular

I Enough computational power available prior to processing of signals

I Process sequence of signals fast ⇒ Apply smaller matrix to samples

I Traditional sampling ⇒ Ignores further processing on the signal

I Traditional sketching ⇒ Recomputes sketch for each realization x
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Problem Statement

I Design a sampling matrix C that selects k ≤ p � n samples

I Design a deterministic sketch Hs to be directly applied to samples

I Joint design of sketching and sampling prior to start of sequence

⇒ Minimize the MSE relative to using full H on the full signal x

I Processing of signals reduces to sampling and matrix multiplication

I The computational cost of processing is reduced by a factor of p/n

H

n × m

C

p × n

Hs

m × p

+
y
m

x
n

ŷ
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Inverse Linear Problem

I Use noisy output (x + w) ∈ Rn to estimate input y ∈ Rm, x = Hy

I Linear model H ∈ Rn×m tall matrix with m� n and full rank

I Output signal x ∈ Rn is k-bandlimited with known Rx � 0 (singular)

I Input noise w, indep. of x with known covariance matrix Rw � 0

I Design sketch H∗s ∈ Rm×p and a selection matrix C∗ ∈ Rp×n

{C∗,H∗s } := argmin
C∈Cpn,Hs

E
[
‖HHsC(x + w)− x‖2

2

]

I Solve this problem before processing the sequence of signals
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Inverse Linear Problem: Noisy case

I Two-stage optimization to solve minE
[
‖HHsC(x + w)− x‖2

2

]

1. Design matrix sketch H∗s = H∗s (C) then replace on objective function

H∗s (C) = ALSRxCT
(
C(Rx + Rw )CT

)−1

⇒ This is the LS solution with a preprocessing to deal with the noise

2. Define auxiliary matrix G = HALS and obtain C∗ by solving

min
C∈Cpn

tr
[
Rx − GRxCT

(
C(Rx + Rw )CT

)−1
CRxGT

]

⇒ Tradeoff between output energy and noise of the selected samples

⇒ This is a binary optimization problem over selection matrix C

⇒ There are
(
n
p

)
possible solutions ⇒ Prohibitive to test all of them
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Inverse Linear Problem: Noisy case

I Binary constraints are inherent to the selection problem

I Equivalent problem with linear objective function and LMIs

⇒ It would be an SDP except for binary constraint

I Observe that CTC = diag(c) ⇒ Sampling vector c ∈ {0, 1}n
I Define C̄α = diag(c)/α, α > 0 and R̄α = Rx + Rw − αIn
I Problem over C can be posed as an equivalent problem over c

min
c∈{0,1,}n,Y,C̄α

tr [Y]

s. t. C̄α = α−1diag(c) , cT1n = p
[

Y − Rx + GRx C̄αRxGT GRx C̄α
C̄αRxGT R̄−1

α + C̄α

]
� 0

I This is also a complicated problem but slightly more tractable
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Direct Linear Problem

I Given noisy input (x + w) ∈ Rn estimate output y = Hx, y ∈ Rm

I Design sketch Hs ∈ Rm×p and p × n selection matrix C

{C∗,H∗s } := argmin
C∈Cpn,Hs

E
[
‖HsC(x + w)−Hx‖2

2

]

I Two stage optimization ⇒ Matrix sketch Hs and sampling scheme C

I Can be reformulated as an equivalent problem over selection vector c

⇒ Linear objective function, LMIs constraints, binary constraint
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Sampling Heuristics

I Solving sampling problems might be intractable ⇒ Heuristic solutions

I Convex relaxation [O((n + m)3.5)] ⇒ c ∈ [0, 1]n ⇒ SDPs

⇒ Tresholding ⇒ Set the p highest values to 1 and the rest to 0

⇒ Random ⇒ Use relaxed solution as distribution to select nodes

I Noise-blind Heuristic [O(n log n)] ⇒ p rows of RxGT with largest ‖ · ‖2

min
C∈Cpn

tr
[
Rx − GRxCT

(
C(Rx + Rw )CT

)−1
CRxGT

]

I Greedy approach [O(np(mnp + p3))] ⇒ Select best node iteratively
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Example: Computing the Graph Fourier Transform

I Consider a bandlimited graph signal x = Vk x̃k ⇒ x̃k : freq. coeff.

⇒ Inverse linear model ⇒ x = Vk x̃k ⇒ Transform H = Vk

I Sequence of noisy signals (x + w) ⇒ Fast computation of the GFT

⇒ w: white gaussian zero-mean noise of power prop. to energy of x

I Compare between different heuristics proposed for the joint design

I Compare with other traditional sampling schemes for reconstruction

⇒ Experimentally Design Sampling (EDS) technique

⇒ Assign to each node the norm of the rows of Vk

⇒ Sample with replacement with a distribution prop. to this norm
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Example: Approximating the GFT

I Erdős-Rényi graph of size n = 100 with probablity 0.2

I Signal bandlimited with k = 10 freq. coeff. ⇒ p = k = 10
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I Error of 2 · 10−5 reducing computational complexity by 10
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Example: Approximating the GFT

I Erdős-Rényi graph of size n = 100 with probablity 0.2

I Signal bandlimited with k = 10 freq. coeff. ⇒ σ2
coeff = 10−4
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Greedy

I Error of 10−4 reducing computational complexity by 100/24 = 4.167
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Classification of handwritten digits

I Classify images of handwritten digits of the MNIST database

I Linear classifier in the PCA domain ⇒ Expensive linear operation

⇒ Subsume PCA and classifier in one linear operator

PCA
Linear

Classifier

Image
n = 784

few PCA
coefficients
k = 20 {0, 1}

I Classify images by operating directly on a subset of pixels

I Images of size n = 784 pixels ⇒ Use only p = 20 pixels

⇒ Processing costs reduced by 39.2 for each image
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Classification of handwritten digits
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(f) Greedy

I Sketching and sampling techniques achieve perfect classification
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Classification of handwritten digits

(a) EDS norm-1 (b) EDS norm-2 (c) EDS norm-∞

(d) Tresholding (e) Noise-Blind (f) Greedy

I Error rate using full image: 4.00%

⇒ Greedy approach using 20 pixels: 4.53%
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Classification of handwritten digits

I 200 image classification as a function of noise for p = 20 pixels
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Classification of handwritten digits

I 200 image classification as a function of the number of pixels
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Conclusions

I Optimal sketch and sampling for processing bandlimited graph signals

⇒ Obtain approximate solution by operating only on a few samples

⇒ Accelerate processing of a sequence of bandlimited signals

I Joint design of matrix sketch and sampling scheme (prior to processing)

⇒ Two-stage optimization ⇒ Heuristic solutions for sampling problem

I Fast computation of GFT of a bandlimited graph signal

⇒ Errors in the order of 10−5 reducing the cost 10 times

I Classification of images of size 784 pixels of handwritten digits

⇒ Using as few as 20 pixels ⇒ 40 times less computational cost

I Journal version available on arXiv: arxiv.org/abs/1611.00119
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PCA Classification
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I Few PCA coefficients ⇒ Problem is inherently lower-dimensional
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Computational Cost
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I Note that in performing PCA we need the complete image

I However, there are pixels that do not contribute to classification

⇒ Pixels on the border of the image, for example

I And there are pixels that are more important for classification

⇒ Pixels that are white in one image but black in the other
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Sampling

I Few nonzero PCA coefficients ⇒ Bandlimited signal ⇒ Sampling

I Subspace representation on covariance graph (not all pixels are useful)

⇒ Linear combination of a few eigenvectors weighted by PCA coeff.

I Extend to arbitrary graphs ⇒ Sampling of bandlimited graph signals

I Design a classifier to operate on the samples ⇒ Reduce dimensionality
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Rethinking Sketching as Sampling

I Sketching ⇒ Reduce dimensionality of linear transformations

I Projection on a lower-dimensional subspace ⇒ Smaller size matrix

⇒ Matrix sketch retains the most outstanding characteristics

I Smaller matrix operates on smaller vector to compute the result

⇒ Project vector on a lower-dimensional subspace ⇒ Sampling

I Jointly design sampling of signal and sketching of linear transform

⇒ Obtain approximate solution by operating only on few samples
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Sampling of Graph Signals

I Graph signals defined on top of a graph G = (V, E ,W) with n nodes

I Irregular support captured by normal graph shift operator S = VΛVH

I Define the graph Fourier transform (GFT) x̃ = VHx
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Sketching

I Estimate the input to a linear transform by measuring the output

⇒ The model is x = Hy, with H ∈ Rn×m and where n� m

⇒ LS solution ⇒ Computationally costly (pseudo-)inverse

I Traditional sketching ⇒ Reduce dimension of the linear problem

I Compress H and x ⇒ KH and Kx, K ∈ Rp×n random, p � n

⇒ Random projection on a lower-dimensional subspace

⇒ Solution of smaller problem miny ‖(KH)y − (Kx)‖2
2 ⇒ Faster

I Design K such that KH and Kx retains important traits of the problem

⇒ Then, solving for (KH,Kx) yields a good approximation
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Operating Conditions

I Sequence of signals to be processed by the same linear transform

⇒ Matrix H is big ⇒ Computationally intensive to operate with

I Realizations of a bandlimited graph random process ⇒ Rx singular

I Enough computational power available prior to processing of signals

I Process sequence of signals fast ⇒ Apply smaller matrix to samples

I Traditional sampling ⇒ Ignores further processing on the signal

I Traditional sketching ⇒ Recomputes sketch for each realization x
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x3 Cx1Cx2
p × 1

Cx3

ŷ3 ŷ2
m × 1

ŷ1

Design C,Hs based on H and statistics of signal Rx and noise Rw
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Problem Statement

I Design a sampling matrix C that selects k ≤ p � n samples

I Design a deterministic sketch Hs to be directly applied to samples

I Joint design of sketching and sampling prior to start of sequence

⇒ Minimize the MSE relative to using full H on the full signal x

I Processing of signals reduces to sampling and matrix multiplication

I The computational cost of processing is reduced by a factor of p/n

H

n × m

C

p × n

Hs

m × p

+
y
m

x
n

ŷ
m

w
n H

m × n

Hs

m × p

C

p × n

+
y
m

ŷ
m

w
n

x
n
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Inverse Linear Problem

I Use noisy output (x + w) ∈ Rn to estimate input y ∈ Rm, x = Hy

I Linear model H ∈ Rn×m tall matrix with m� n and full rank

I Output signal x ∈ Rn is k-bandlimited with known Rx � 0 (singular)

I Input noise w, indep. of x with known covariance matrix Rw � 0

I Design sketch H∗s ∈ Rm×p and a selection matrix C∗ ∈ Rp×n

{C∗,H∗s } := argmin
C∈Cpn,Hs

E
[
‖HHsC(x + w)− x‖2

2

]

I Solve this problem before processing the sequence of signals

H

n × m

C

p × n

Hs

m × p

+
y
m

x
n

ŷ
m

w
n

9/22



Inverse Linear Problem: Noisy case

I Two-stage optimization to solve minE
[
‖HHsC(x + w)− x‖2

2

]

1. Design matrix sketch H∗s = H∗s (C) then replace on objective function

H∗s (C) = ALSRxCT
(
C(Rx + Rw )CT

)−1

⇒ This is the LS solution with a preprocessing to deal with the noise

2. Define auxiliary matrix G = HALS and obtain C∗ by solving

min
C∈Cpn

tr
[
Rx − GRxCT

(
C(Rx + Rw )CT

)−1
CRxGT

]

⇒ Tradeoff between output energy and noise of the selected samples

⇒ This is a binary optimization problem over selection matrix C

⇒ There are
(
n
p

)
possible solutions ⇒ Prohibitive to test all of them
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Inverse Linear Problem: Noisy case

I Binary constraints are inherent to the selection problem

I Equivalent problem with linear objective function and LMIs

⇒ It would be an SDP except for binary constraint

I Observe that CTC = diag(c) ⇒ Sampling vector c ∈ {0, 1}n
I Define C̄α = diag(c)/α, α > 0 and R̄α = Rx + Rw − αIn
I Problem over C can be posed as an equivalent problem over c

min
c∈{0,1,}n,Y,C̄α

tr [Y]

s. t. C̄α = α−1diag(c) , cT1n = p
[

Y − Rx + GRx C̄αRxGT GRx C̄α
C̄αRxGT R̄−1

α + C̄α

]
� 0

I This is also a complicated problem but slightly more tractable
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Direct Linear Problem

I Given noisy input (x + w) ∈ Rn estimate output y = Hx, y ∈ Rm

I Design sketch Hs ∈ Rm×p and p × n selection matrix C

{C∗,H∗s } := argmin
C∈Cpn,Hs

E
[
‖HsC(x + w)−Hx‖2

2

]

I Two stage optimization ⇒ Matrix sketch Hs and sampling scheme C

I Can be reformulated as an equivalent problem over selection vector c

⇒ Linear objective function, LMIs constraints, binary constraint

H

m × n

Hs

m × p

C

p × n

+
y
m

ŷ
m

w
n

x
n
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Sampling Heuristics

I Solving sampling problems might be intractable ⇒ Heuristic solutions

I Convex relaxation [O((n + m)3.5)] ⇒ c ∈ [0, 1]n ⇒ SDPs

⇒ Tresholding ⇒ Set the p highest values to 1 and the rest to 0

⇒ Random ⇒ Use relaxed solution as distribution to select nodes

I Noise-blind Heuristic [O(n log n)] ⇒ p rows of RxGT with largest ‖ · ‖2

min
C∈Cpn

tr
[
Rx − GRxCT

(
C(Rx + Rw )CT

)−1
CRxGT

]

I Greedy approach [O(np(mnp + p3))] ⇒ Select best node iteratively

13/22



Example: Computing the Graph Fourier Transform

I Consider a bandlimited graph signal x = Vk x̃k ⇒ x̃k : freq. coeff.

⇒ Inverse linear model ⇒ x = Vk x̃k ⇒ Transform H = Vk

I Sequence of noisy signals (x + w) ⇒ Fast computation of the GFT

⇒ w: white gaussian zero-mean noise of power prop. to energy of x

I Compare between different heuristics proposed for the joint design

I Compare with other traditional sampling schemes for reconstruction

⇒ Experimentally Design Sampling (EDS) technique

⇒ Assign to each node the norm of the rows of Vk

⇒ Sample with replacement with a distribution prop. to this norm

14/22



Example: Approximating the GFT

I Erdős-Rényi graph of size n = 100 with probablity 0.2

I Signal bandlimited with k = 10 freq. coeff. ⇒ p = k = 10

10 -5 10 -4 10 -3

σ2
coeff

10 -5

10 -4

10 -3

10 -2
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e 

M
SE

EDS norm-1
EDS norm-2
EDS norm-∞
Conv Relaxation Random
Conv Relaxation Tresholding
Noise-Blind Heuristic
Greedy

I Error of 2 · 10−5 reducing computational complexity by 10
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Example: Approximating the GFT

I Erdős-Rényi graph of size n = 100 with probablity 0.2

I Signal bandlimited with k = 10 freq. coeff. ⇒ σ2
coeff = 10−4

6 8 10 12 14 16 18 20 22 24
p

10 -5

10 -4

10 -3

10 -2
R
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M
SE

EDS norm-1
EDS norm-2
EDS norm-∞
Conv Relaxation Random
Conv Relaxation Tresholding
Noise-Blind Heuristic
Greedy

I Error of 10−4 reducing computational complexity by 100/24 = 4.167
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Classification of handwritten digits

I Classify images of handwritten digits of the MNIST database
I Linear classifier in the PCA domain ⇒ Expensive linear operation

⇒ Subsume PCA and classifier in one linear operator

PCA
Linear

Classifier

Image
n = 784

few PCA
coefficients
k = 20 {0, 1}

H =
PCA+Classif.

x (Image)

n = 784 y

I Classify images by operating directly on a subset of pixels
I Images of size n = 784 pixels ⇒ Use only p = 20 pixels

⇒ Processing costs reduced by 39.2 for each image
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Classification of handwritten digits
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(f) Greedy

I Sketching and sampling techniques achieve perfect classification
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Classification of handwritten digits

(a) EDS norm-1 (b) EDS norm-2 (c) EDS norm-∞

(d) Tresholding (e) Noise-Blind (f) Greedy

I Error rate using full image: 4.00%

⇒ Greedy approach using 20 pixels: 4.53%
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Classification of handwritten digits

I 200 image classification as a function of noise for p = 20 pixels
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Classification of handwritten digits

I 200 image classification as a function of the number of pixels
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Conclusions

I Optimal sketch and sampling for processing bandlimited graph signals

⇒ Obtain approximate solution by operating only on a few samples

⇒ Accelerate processing of a sequence of bandlimited signals

I Joint design of matrix sketch and sampling scheme (prior to processing)

⇒ Two-stage optimization ⇒ Heuristic solutions for sampling problem

I Fast computation of GFT of a bandlimited graph signal

⇒ Errors in the order of 10−5 reducing the cost 10 times

I Classification of images of size 784 pixels of handwritten digits

⇒ Using as few as 20 pixels ⇒ 40 times less computational cost

I Journal version available on arXiv: arxiv.org/abs/1611.00119
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