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PCA Classification

» Classify images according to the digits handwritten on them
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PCA Classification

ojI1

» Classify images according to the digits handwritten on them

» Perform PCA = Keep first few coefficients = Apply linear classifier

few PCA
Image coefficients
n =784 PCA k=20 Linear
Classifier
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PCA Classification

» Few PCA coefficients = Problem is inherently lower-dimensional
» Improves classification task =- Low-pass filter to remove noise

» Lower-dimensional representation can also save computational cost
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Computational Cost

» Note that in performing PCA we need the complete image

» However, there are pixels that do not contribute to classification
= Pixels on the border of the image, for example

» And there are pixels that are more important for classification
= Pixels that are white in one image but black in the other
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Sampling

» Few nonzero PCA coefficients =- Bandlimited signal =- Sampling
» Subspace representation on covariance graph (not all pixels are useful)
= Linear combination of a few eigenvectors weighted by PCA coeff.

» Extend to arbitrary graphs = Sampling of bandlimited graph signals
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Sampling

» Few nonzero PCA coefficients =- Bandlimited signal =- Sampling
» Subspace representation on covariance graph (not all pixels are useful)
= Linear combination of a few eigenvectors weighted by PCA coeff.

» Extend to arbitrary graphs = Sampling of bandlimited graph signals

» Design a classifier to operate on the samples = Reduce dimensionality
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Rethinking Sketching as Sampling

» Sketching = Reduce dimensionality of linear transformations

> Projection on a lower-dimensional subspace = Smaller size matrix
= Matrix sketch retains the most outstanding characteristics

» Smaller matrix operates on smaller vector to compute the result

= Project vector on a lower-dimensional subspace = Sampling
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Rethinking Sketching as Sampling

v

Sketching =- Reduce dimensionality of linear transformations

v

Projection on a lower-dimensional subspace = Smaller size matrix

= Matrix sketch retains the most outstanding characteristics

v

Smaller matrix operates on smaller vector to compute the result

= Project vector on a lower-dimensional subspace = Sampling

v

Jointly design sampling of signal and sketching of linear transform

= Obtain approximate solution by operating only on few samples

m X p p X n
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Sampling of Graph Signals

» Graph signals defined on top of a graph G = (V, £, W) with n nodes
» Irregular support captured by normal graph shift operator S = VAVH
» Define the graph Fourier transform (GFT) % = V/x

= Linear combination weighted by GFT coefficients x = VX
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Sampling of Graph Signals

» Graph signals defined on top of a graph G = (V, £, W) with n nodes
» Irregular support captured by normal graph shift operator S = VAVH
» Define the graph Fourier transform (GFT) % = V/x
= Linear combination weighted by GFT coefficients x = VX
» Bandlimited graph signal = X = [Xx; 0,—k] with k < n = x = VX
= Active eigenbasis of vectors Vi = [V, 0,y (n—x)]
» Signal as a linear combination of few elements in V, = Sampling
ANALYSIS SYNTHESIS
= | -

projection matrix T— frequencies (dictionary atoms)
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Sketching

» Estimate the input to a linear transform by measuring the output
= The model is x = Hy, with H € R and where n > m
= LS solution =- Computationally costly (pseudo-)inverse
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Sketching

v

Estimate the input to a linear transform by measuring the output
= The model is x = Hy, with H € R and where n > m
= LS solution =- Computationally costly (pseudo-)inverse

v

Traditional sketching = Reduce dimension of the linear problem
Compress H and x = KH and Kx, K € RP*" random, p < n
= Random projection on a lower-dimensional subspace

v

= Solution of smaller problem miny ||(KH)y — (Kx)||3 = Faster

v

Design K such that KH and Kx retains important traits of the problem
= Then, solving for (KH, Kx) yields a good approximation

v

We consider a deterministic design to obtain a smaller matrix sketch
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Operating Conditions

v

Sequence of signals to be processed by the same linear transform

= Matrix H is big = Computationally intensive to operate with

v

Realizations of a bandlimited graph random process =- R, singular

v

Enough computational power available prior to processing of signals

v

Process sequence of signals fast =- Apply smaller matrix to samples

v

Traditional sampling = Ignores further processing on the signal

v

Traditional sketching =- Recomputes sketch for each realization x
——2 21 ¢ fz—=—=1 " |—
pXn

iii 5Bl
y3 ¥2 %1

X3 X2 X1 Cx3 Cxy Cx; mx 1
nx1 p X1

Design C, Hs based on H and statistics of signal Ry and noise Ry,

Gama, Marques, Mateos, Ribeiro Rethinking Sketching as Sampling



Problem Statement

» Design a sampling matrix C that selects k < p < n samples

v

Design a deterministic sketch Hg to be directly applied to samples

v

Joint design of sketching and sampling prior to start of sequence
= Minimize the MSE relative to using full H on the full signal x
> Processing of signals reduces to sampling and matrix multiplication

» The computational cost of processing is reduced by a factor of p/n

mXxp pXn
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Inverse Linear Problem

» Use noisy output (x + w) € R” to estimate input y € R™, x = Hy
» Linear model H € R"*™ tall matrix with m < n and full rank

» Output signal x € R" is k-bandlimited with known R, = 0

>

Input noise w, indep. of x with known covariance matrix R,, > 0
> Design sketch H; € R™*P and a selection matrix C* € RP*"

{C*,H;} := argmin E [|[HH,C(x + w) — x||3]

€Cpn,Hs

v

Solve this problem before processing the sequence of signals
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Inverse Linear Problem: Noisy case

» Two-stage optimization to solve min E [|[HH,C(x + w) — x|[3]

1. Design matrix sketch Hf = HZ(C) then replace on objective function
H:(C) = AisR.C7 (C(R, +R,)CT)

= This is the LS solution with a preprocessing to deal with the noise

2. Define auxiliary matrix G = HA s and obtain C* by solving

. —1
min tr [Rx ~ GR.CT (C(R, +R,)CT) CRXGT]

= Tradeoff between output energy and noise of the selected samples
= This is a binary optimization problem over selection matrix C

n

= There are (p

) possible solutions =- Prohibitive to test all of them
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Inverse Linear Problem: Noisy case

v

Binary constraints are inherent to the selection problem

v

Equivalent problem with linear objective function and LMls
= It would be an SDP except for binary constraint
Observe that CTC = diag(c) = Sampling vector c € {0,1}"

v

> Define C, = diag(c)/a, a >0and R, =R, +R,, —al,
» Problem over C can be posed as an equivalent problem over c
min _ tr[Y]
ce{0,1,}7,Y,C,
s.t. C, = a~diag(c) , "1, =p
Y -R,+GR.C,R.GT GR.C, |
C.R,G" R;1+C,| —
» This is also a complicated problem but slightly more tractable
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Direct Linear Problem

v

Given noisy input (x + w) € R" estimate output y = Hx, y € R”

v

Design sketch Hg € R™*P and p x n selection matrix C

{C*,H;} := argmin E [||H;C(x +w) — Hx||§]

Epm s

v

Two stage optimization = Matrix sketch Hs and sampling scheme C

v

Can be reformulated as an equivalent problem over selection vector ¢

=- Linear objective function, LMIs constraints, binary constraint
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Sampling Heuristics

v

Solving sampling problems might be intractable =- Heuristic solutions

v

Convex relaxation [O((n+ m)3*%)] = c€[0,1]" = SDPs
= Tresholding = Set the p highest values to 1 and the rest to 0

= Random = Use relaxed solution as distribution to select nodes

v

Noise-blind Heuristic [O(nlogn)] = p rows of R,GT with largest | - |2

mip tr [R, — GR.C” (C(R, +R.)C") " CR.G”|

CEC,n

v

Greedy approach [O(np(mnp + p3))] = Select best node iteratively
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Example: Computing Graph Fourier Transform

» Consider a bandlimited graph signal x = VX, = X.: freq. coeff.
= Inverse linear model = x = VX, = Transform H =V,

» Sequence of noisy signals (x + w) = Fast computation of the GFT
= w: white gaussian zero-mean noise of power prop. to energy of x

Gama, Marques, Mateos, Ribeiro Rethinking Sketching as Sampling



Example: Computing Graph Fourier Transform

» Consider a bandlimited graph signal x = VX, = X.: freq. coeff.

= Inverse linear model = x = VX, = Transform H =V,

v

Sequence of noisy signals (x + w) = Fast computation of the GFT
= w: white gaussian zero-mean noise of power prop. to energy of x

v

Compare between different heuristics proposed for the joint design

v

Compare with other traditional sampling schemes
= Experimentally Design Sampling (EDS) technique
= Assign to each node the norm of the rows of Vy

= Sample with replacement with a distribution prop. to this norm
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Example: Approximating the GFT

> Erdds-Rényi graph of size n = 100 with probablity 0.2
» Signal bandlimited with k = 10 freq. coeff. = p=k =10

T

-@-EDS norm-1

-#- EDS norm-2

~9-EDS norm-x

-@- Conv Relaxation Random

-#- Conv Relaxation Tresholding

-@-Noise-Blind Heuristic
Greedy

Relative MSE

10-5 L |
10°® 107 107
oioei(

» Error of 2- 107> reducing computational complexity by 10
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Example: Approximating the GFT

> Erdds-Rényi graph of size n = 100 with probablity 0.2
> Signal bandlimited with k = 10 freq. coeff. = o2 4 =10"*

T
-@-EDS norm-1

@+ EDS norm-2

~¢-EDS norm-

-@-Conv Relaxation Random
+#- Conv Relaxation Tresholding
-@-Noise-Blind Heuristic
Greedy

Relative MSE

» Error of 107* reducing computational complexity by 100/24 = 4.167
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Classification of handwritten digits

» Classify images of handwritten digits of the MNIST database
» Linear classifier in the PCA domain = Expensive linear operation

= Subsume PCA and classifier in one linear operator

Gama, Marques, Mateos, Ribeiro

k=20 Linear

few PCA
Image coefficients
n =784 PCA
=]

Classifier

Rethinking Sketching as Sampling

{o,1}




Classification of handwritten digits

» Classify images of handwritten digits of the MNIST database
» Linear classifier in the PCA domain =- Expensive linear operation

= Subsume PCA and classifier in one linear operator

x (Image)
n =784 H= y
PCA+Classif.
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Classification of handwritten digits

» Classify images of handwritten digits of the MNIST database
» Linear classifier in the PCA domain =- Expensive linear operation

= Subsume PCA and classifier in one linear operator

x (Image)
n =784 H= y
PCA+Classif.

» Classify images by operating directly on a subset of pixels
> Images of size n = 784 pixels =- Use only p = 20 pixels
= Processing costs reduced by 39.2 for each image
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Classification of handwritten digits

o) ' goy !

(a) EDS norm-1 ) EDS norm-2 ) EDS norm-co
d) Tresholding ) Noise-Blind f) Greedy

» Sketching and sampling techniques achieve perfect classification

Gama, Marques, Mateos, Ribeiro Rethinking Sketching as Sampling



Classification of handwritten digits

EHEHEBEHRB

) EDS norm-1 ) EDS norm-2 ) EDS norm-co
d) Tresholding ) Noise-Blind f) Greedy

» Error rate using full image: 4.00%

= Greedy approach using 20 pixels: 4.53%
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Classification of handwritten digits

» 200 image classification as a function of noise for p = 20 pixels

5 -@-EDS norm-1

& EDS norm-2

~$-EDS norm-

-@- Conv Relaxation Random

-#: Conv Relaxation Tresholding

-@-Noise-Blind Heuristic
Greedy

o

Errors

coeff
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Classification of handwritten digits

» 200 image classification as a function of the number of pixels

" [--EDS norm-1
& EDS norm-2
-#-EDS norm-»
N -@-Conv Relaxation Random
Y -#- Conv Relaxation Tresholding
3 -®-Noise-Blind Heuristic
Greedy

00 =
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=
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p
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Conclusions

v

Optimal sketch and sampling for processing bandlimited graph signals
= Obtain approximate solution by operating only on a few samples

= Accelerate processing of a sequence of bandlimited signals

v

Joint design of matrix sketch and sampling scheme (prior to processing)

= Two-stage optimization = Heuristic solutions for sampling problem

v

Fast computation of GFT of a bandlimited graph signal
= Errors in the order of 107> reducing the cost 10 times

v

Classification of images of size 784 pixels of handwritten digits

=- Using as few as 20 pixels = 40 times less computational cost

v

Journal version available on arXiv: arxiv.org/abs/1611.00119
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Classification

» Classify images according to the digits handwritten on them
» Perform PCA = Keep first few coefficients =- Apply linear classifier

few PCA
Image coefficients (0,1}
n =784 k=20 Linear ’
PCA Classifier




PCA Classification

» Few PCA coefficients =- Problem is inherently lower-dimensional
» Improves classification task =- Low-pass filter to remove noise

» Lower-dimensional representation can also save computational cost



Computational Cost

» Note that in performing PCA we need the complete image

» However, there are pixels that do not contribute to classification
= Pixels on the border of the image, for example

» And there are pixels that are more important for classification

= Pixels that are white in one image but black in the other



Sampling

v

Few nonzero PCA coefficients =- Bandlimited signal = Sampling

v

Subspace representation on covariance graph (not all pixels are useful)

= Linear combination of a few eigenvectors weighted by PCA coeff.

v

Extend to arbitrary graphs = Sampling of bandlimited graph signals

v

Design a classifier to operate on the samples =- Reduce dimensionality



Rethinking Sketching as Sampling

v

Sketching = Reduce dimensionality of linear transformations

v

Projection on a lower-dimensional subspace = Smaller size matrix

= Matrix sketch retains the most outstanding characteristics

v

Smaller matrix operates on smaller vector to compute the result

= Project vector on a lower-dimensional subspace = Sampling

v

Jointly design sampling of signal and sketching of linear transform

= Obtain approximate solution by operating only on few samples

pXn mXp

4/22



Sampling of Graph Signals

» Graph signals defined on top of a graph G = (V, &, W) with n nodes
» Irregular support captured by normal graph shift operator S = VAV"
» Define the graph Fourier transform (GFT) % = VHx
= Linear combination weighted by GFT coefficients x = VX
» Bandlimited graph signal = X = [Xx; 0,—k] with k < n = x = VX,
= Active eigenbasis of vectors Vi = [V, 0 (n—p)]
» Signal as a linear combination of few elements in V, = Sampling

ANALYSIS SYNTHESIS

projection matrix



Sketching

v

Estimate the input to a linear transform by measuring the output
= The model is x = Hy, with H € R"*™ and where n > m
= LS solution = Computationally costly (pseudo-)inverse

v

Traditional sketching =- Reduce dimension of the linear problem
Compress H and x = KH and Kx, K € RP*" random, p < n

= Random projection on a lower-dimensional subspace

v

= Solution of smaller problem miny [|(KH)y — (Kx)||3 = Faster

v

Design K such that KH and Kx retains important traits of the problem
= Then, solving for (KH, Kx) yields a good approximation

v

We consider a deterministic design to obtain a smaller matrix sketch



Operating Conditions

v

Sequence of signals to be processed by the same linear transform

= Matrix H is big = Computationally intensive to operate with

v

Realizations of a bandlimited graph random process = R, singular

v

Enough computational power available prior to processing of signals

v

Process sequence of signals fast =- Apply smaller matrix to samples

v

Traditional sampling =- Ignores further processing on the signal

v

Traditional sketching = Recomputes sketch for each realization x
——2 21 ¢ =1 % |
pXn m X p H H I
i i i 3 92 N1
m X 1

X3 X2 X1 Cxz3 Cxp Cx;
nXx1 p X1

Design C, Hs based on H and statistics of signal Ry and noise Ry,
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Problem Statement

v

Design a sampling matrix C that selects k < p < n samples

v

Design a deterministic sketch Hg to be directly applied to samples

v

Joint design of sketching and sampling prior to start of sequence
= Minimize the MSE relative to using full H on the full signal x

v

Processing of signals reduces to sampling and matrix multiplication

v

The computational cost of processing is reduced by a factor of p/n

8/22




Inverse Linear Problem

Use noisy output (x +w) € R" to estimate input y € R™, x = Hy
Linear model H € R™*™ tall matrix with m < n and full rank

Output signal x € R” is k-bandlimited with known R, = 0

vV v.v Y

Input noise w, indep. of x with known covariance matrix R,, > 0

v

Design sketch H; € R™*? and a selection matrix C* € RP*"

{C*,H;} := argmin E [|[HH,C(x + w) — x|[3]

€Cpn,Hs

v

Solve this problem before processing the sequence of signals

n X m

y |_|x+w
n . J n

y

Ml

m X p pXn

3
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Inverse Linear Problem: Noisy case

» Two-stage optimization to solve minE [|[HH,C(x + w) — x|3]

1. Design matrix sketch HY = HZ(C) then replace on objective function
Hz(C) = AisR.CT (C(R, +R,)CT)

= This is the LS solution with a preprocessing to deal with the noise

2. Define auxiliary matrix G = HA s and obtain C* by solving

. -1
min tr [R.— GR.CT (C(R, +R,)C") " CR.G”]

= Tradeoff between output energy and noise of the selected samples
= This is a binary optimization problem over selection matrix C
= There are (g) possible solutions = Prohibitive to test all of them



Inverse Linear Problem: Noisy case

v

Binary constraints are inherent to the selection problem

v

Equivalent problem with linear objective function and LMls
= It would be an SDP except for binary constraint

Observe that CTC = diag(c) = Sampling vector ¢ € {0,1}"
Define C, = diag(c)/a, a > 0and R, =R, +R,, — al,

Problem over C can be posed as an equivalent problem over c

v

v

v

min _  tr[Y]
ce{0,1,}"Y,C,
s.t. C, = a ldiag(c) , "1, =p
Y -R,+GR,C,R,G"T GR,C,

C.R.G7 Ro14+C =0

v

This is also a complicated problem but slightly more tractable



Direct Linear Problem

» Given noisy input (x + w) € R” estimate output y = Hx, y € R™
» Design sketch Hy € R™*P and p x n selection matrix C
{C*,H:} := argmin E [|[H,C(x + w) — Hx]|3]
€ pnsytis
» Two stage optimization = Matrix sketch Hs and sampling scheme C
» Can be reformulated as an equivalent problem over selection vector c

= Linear objective function, LMIs constraints, binary constraint




Sampling Heuristics

v

Solving sampling problems might be intractable =- Heuristic solutions

v

Convex relaxation [O((n+ m)3*%)] = ¢ €[0,1]" = SDPs
= Tresholding = Set the p highest values to 1 and the rest to 0

= Random = Use relaxed solution as distribution to select nodes

v

Noise-blind Heuristic [O(nlogn)] = p rows of R,G with largest | - .

min tr [R, — GR.C” (C(R, +R,)C") " CR.GT]
CeCpn

v

Greedy approach [O(np(mnp + p%))] = Select best node iteratively



Example: Computing Graph Fourier Transform

» Consider a bandlimited graph signal x = VX, = Xx: freq. coeff.
= Inverse linear model = x = VX, = Transform H =V

v

Sequence of noisy signals (x + w) = Fast computation of the GFT
= w: white gaussian zero-mean noise of power prop. to energy of x

v

Compare between different heuristics proposed for the joint design

v

Compare with other traditional sampling schemes
= Experimentally Design Sampling (EDS) technique
= Assign to each node the norm of the rows of V

= Sample with replacement with a distribution prop. to this norm



Example: Approximating the GFT

> Erdés-Rényi graph of size n = 100 with probablity 0.2
» Signal bandlimited with k = 10 freq. coeff.

1072

= p=k=10

@~ EDS norm-1

& EDS norm-2

~9-EDS norm-e

-@- Conv Relaxation Random

@+ Conv Relaxation Tresholding

-@- Noise-Blind Heuristic
Greedy

Relative MSE

-5 L L
1010_5 -
0,2

coeff

» Error of 21075 reducing computational complexity by 10



Example: Approximating the GFT

» Erdés-Rényi graph of size n = 100 with probablity 0.2
» Signal bandlimited with k = 10 freq. coeff. = 02 . =10"*

coe

T
~@~EDS norm-1

-4+ EDS norm-2

~#-EDS norm-

-@- Conv Relaxation Random
-4+ Conv Relaxation Tresholding
-@-Noise-Blind Heuristic
Greedy

Relative MSE

i S




Classification of handwritten digits

» Classify images of handwritten digits of the MNIST database
» Linear classifier in the PCA domain = Expensive linear operation
= Subsume PCA and classifier in one linear operator

few PCA
Image coefficients (0,1}
n =784 k=20 Linear ’
PCA Classifier

x (Image)
n=784 H= y
PCA+Classif.

» Classify images by operating directly on a subset of pixels
» Images of size n = 784 pixels = Use only p = 20 pixels
= Processing costs reduced by 39.2 for each image



Classification of handwritten digits

o) I Qo

) EDS norm-1 ) EDS norm-2 ) EDS norm-oo
d) Tresholding ) Noise-Blind f) Greedy

» Sketching and sampling techniques achieve perfect classification



Classification of handwritten digits

BEEEHBEBHAB

(a) EDS norm-1 (b) EDS norm-2 ) EDS norm-oco
d) Tresholding ) Noise-Blind f) Greedy

» Error rate using full image: 4.00%
= Greedy approach using 20 pixels: 4.53%



Classification of handwritten digits

» 200 image classification as a function of noise for p = 20 pixels
5

-@-EDS norm-1
-#-EDS norm-2
-4-EDS norm-«
-@-Conv Relaxation Random
@+ Conv Relaxation Tresholding
-@-Noise-Blind Heuristic
Greedy

IS

Errors

coeff



Classification of handwritten digits

» 200 image classification as a function of the number of pixels

~@~EDS norm-1
-#-EDS norm-2
~#-EDS norm-o
N ~@-Conv Relaxation Random
"‘\.‘ @+ Conv Relaxation Tresholding
3 Y -@-Noise-Blind Heuristic
Greedy

1Y, S AU SN U SO U VO U W e il G2 S S
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
p




Conclusions

v

Optimal sketch and sampling for processing bandlimited graph signals
= Obtain approximate solution by operating only on a few samples

= Accelerate processing of a sequence of bandlimited signals

v

Joint design of matrix sketch and sampling scheme (prior to processing)

= Two-stage optimization = Heuristic solutions for sampling problem

v

Fast computation of GFT of a bandlimited graph signal
= Errors in the order of 1075 reducing the cost 10 times

v

Classification of images of size 784 pixels of handwritten digits

= Using as few as 20 pixels =- 40 times less computational cost

v

Journal version available on arXiv: arxiv.org/abs/1611.00119



