

Scalable and Robust PCA Approach with Random Column/Row Sampling

Mostafa Rahmani and George Atia

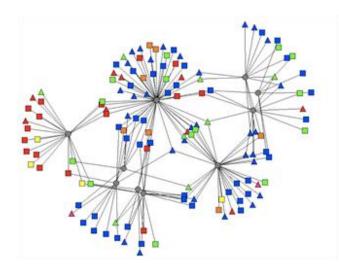
University of Central Florida

Outline

- Robust PCA problem & data corruption models
- Randomized approaches & existing results
- Proposed approach
- ≻New result
- ➢Numerical experiments

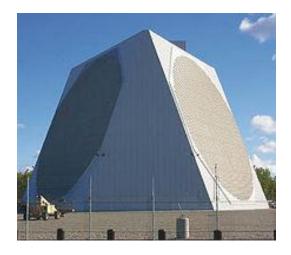
Applications

Background Subtraction



Network Data Analysis

Removing Shadow



Phased array systems signal processing

Robust PCA Problem

> Data Model D = L + CLow Rank Matrix Data Corruption

>The problem is defined to

○ Learn the column-space/row-space of L

 \circ Decomposing matrix ${\bf D}$

Data Corruption Models Matrix C

Element-wise corruption model

>Matrix C is a sparse matrix with arbitrary support.

≻All the columns/rows might be affected.

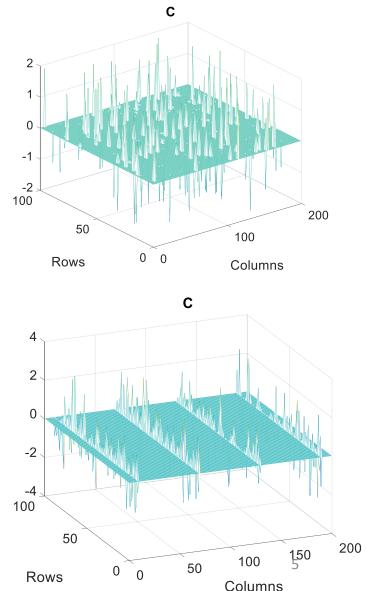
Known as low rank plus sparse matrix decomposition problem.

Column-wise corruption model

- > A subset of the columns of C are non-zero columns.
- These non-zero columns do not lie in the Column space of L.

Known as subspace recovery or outlier detection problem.

Inlier-Outlier Structure



Algorithms

Element-wise model

Principal Component Pursuit
 [Chandrasekaran et al. 2011]
 Alternating minimization
 [Ke et al. 2005]

 $\min_{\hat{\mathbf{L}},\hat{\mathbf{C}}} \|\hat{\mathbf{L}}\|_* + \lambda \|\hat{\mathbf{C}}\|_1$ subject to $\hat{\mathbf{L}} + \hat{\mathbf{C}} = \mathbf{D}.$

Column-wise model

- >Algorithms based on column-sparsity [Xu et al. 2010, Ding et al. 2006]
- Algorithms based on outliers linear independence [Soltanolkotabi et al, 2012]
- >Algorithm based on low coherency of outliers [Rahmani et. Al, 2016]

Complexity of Robus PCA

 $\mathbf{D} \in \mathbb{R}^{N_1 \times N_2}$

Computation complexity

 $\geq O(r N_1 N_2 T)$

>Memory requirement

 $O(N_1N_2)$

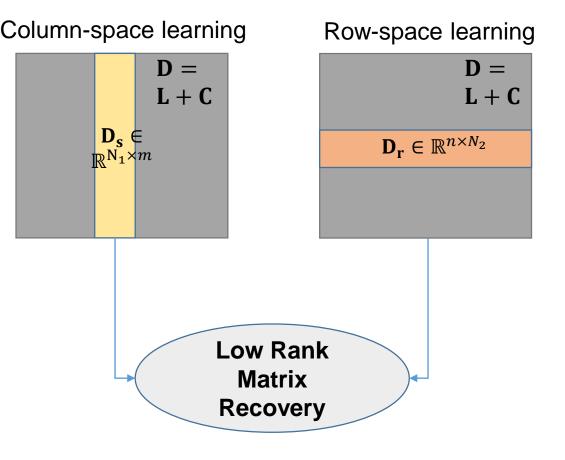
Can we solve the problem with few random linear measurements?

Randomized approach

Element wise model

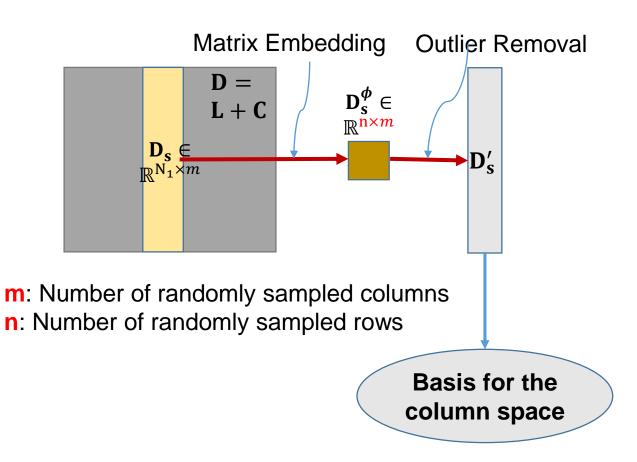
(Matrix Decomposition)

[Mackey et al. 2011, Rahmani et al. 2015]



Column wise model (Subspace Recovery)

[Li et al., 2014]



Existing Results

➢ Elements-wise model (matrix decomposition)
 ➢ Sample complexity O(rµ max(N₁, N₂)) [Rahmani et al., 2015]
 ➢ Computation complexity O(r²µ max(N₁, N₂)T)

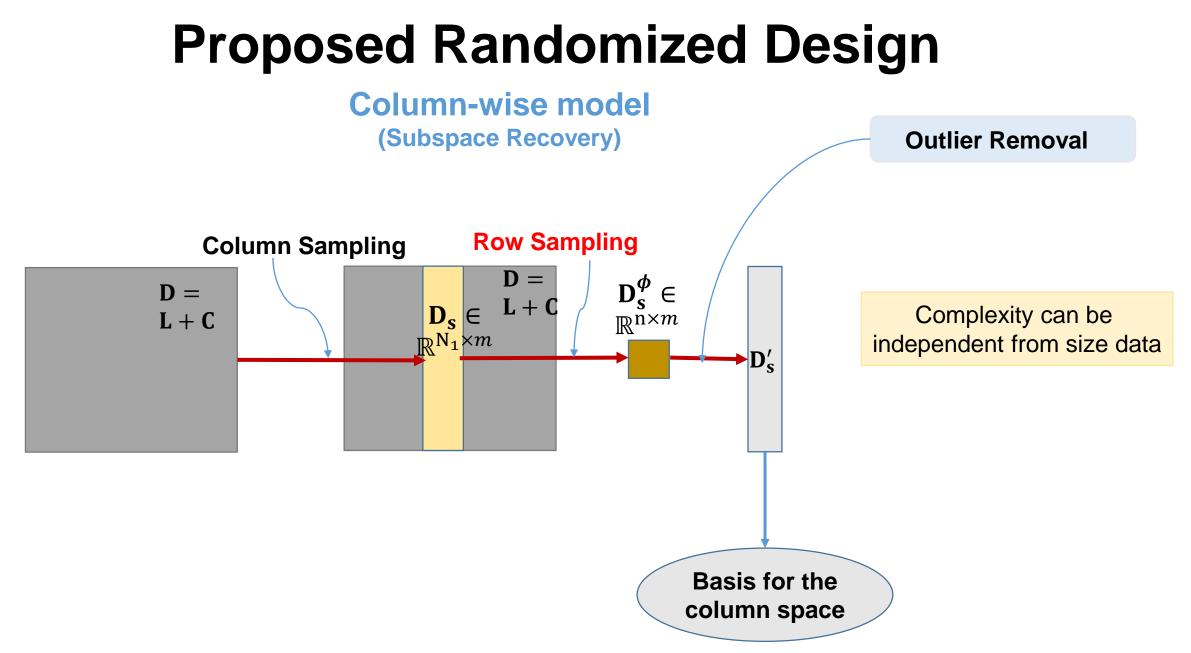
Column-wise model (Subspace recovery)

Sample complexity $O(rN_2)$ [Li et al., 2015], $O(r^2\mu)$ [Rahmani et al., 2015]

>Computation complexity $O(N_1 r^2 \mu + r^3 \mu)$

Motivation

In the column-wise outlier model, can we make the computation complexity of subspace recovery independent from the size of data?



Outlier Removal

➤Outlier column sparsity

$$\min_{\hat{\mathbf{L}},\hat{\mathbf{C}}} \|\hat{\mathbf{L}}\|_* + \lambda \|\hat{\mathbf{C}}\|_{1,2}$$
subject to $\hat{\mathbf{L}} + \hat{\mathbf{C}} = \mathbf{D}$

➤Outlier linear independence

Checking if a column is linearly dependent on other columns or has sparse representation w.r.t them

Performance Guarantee Data Model

Data Model: The given data matrix $\mathbf{D} \in \mathbb{R}^{N_1 \times N_2}$ satisfies the following conditions

1. D = L + C and the columns of D are normalized.

2. Rank(L) = r.

3. Matrix C has K non columns. The non-zero columns of C are i.i.d. random vectors uniformly

distributed on the unit sphere. $\longrightarrow \frac{K}{N_2} = \frac{\# \text{ outliers}}{\# \text{ Columns}}$

Performance Guarantee

Sufficient Conditions, Outlier detection: Column sparsity

Theorem 1: If the given data follows the data model, the columns/rows are sampled randomly, and

$$\begin{split} & \frac{K}{N_2} \le \frac{N_2/2N_2'}{1+6r\mu_v(121/9)} \\ & m \ge \max\left(\!12\frac{K}{N_2} \left(1\!+\!6r\mu_v(121/9)\right)^2\!\log\frac{2}{\delta} \,, \, 10r\mu_v\log\frac{2r}{\delta}\!\right) \\ & n \ge \max\left[r\mu_u \max\left(c_1\log r, c_2\log\left(\frac{3}{\delta}\right)\right) \,, \, r+1+2\log 2K/\delta + \sqrt{8\log 2K/\delta}\right] \end{split}$$

then the proposed method recovers the exact subspace with probability at least $1 - 4\delta$.

Performance Guarantee

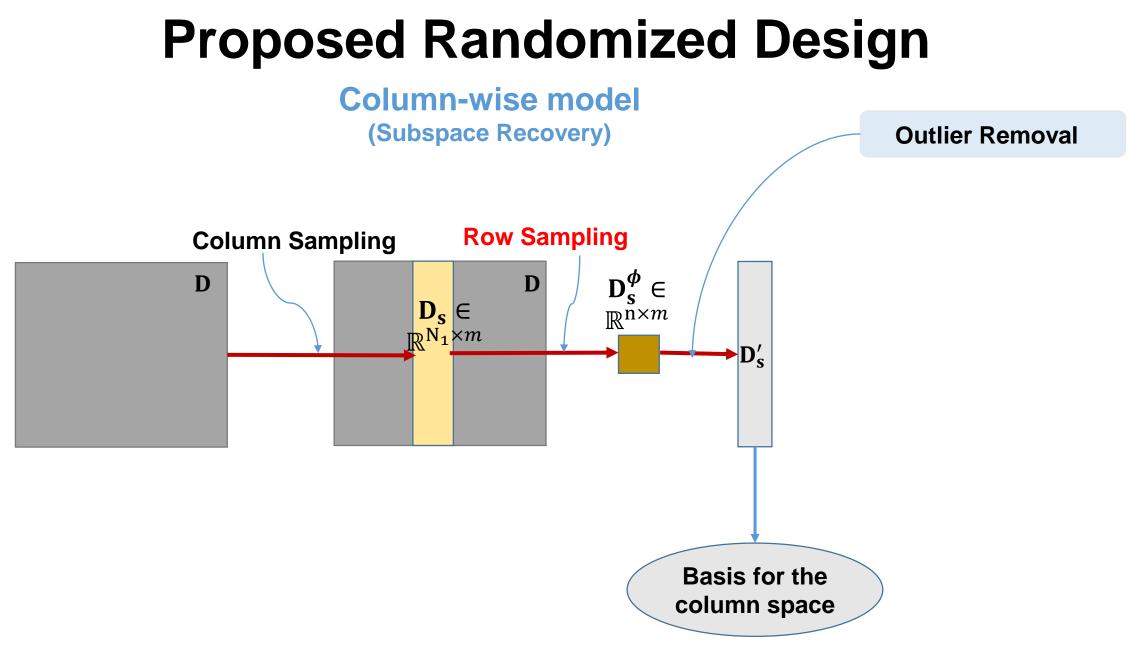
Sufficient conditions, Outlier detection: Outlier linear independence

Theorem 2: If data follows the data model, the columns/rows are sampled randomly, and

$$m_{1} \geq C \mu_{v} r \log \frac{4r}{\delta}$$

$$m_{2} \geq \max \left[r \mu_{u} \max \left(c_{1} \log r, c_{2} \log \left(\frac{3}{\delta} \right) \right) , r + q + 2 \log \frac{2}{\delta} + \sqrt{8 q \log \frac{K}{\delta}} \right]$$

then the proposed method recovers the exact subspace with probability at least $1 - 6\delta$.



New Result

➤The computation and sample complexity for exact subspace recovery is almost independent from the size of data.

Sample complexity

- > Column sparsity: $O(r^2 \mu_u \max(\mu_v, r \mu_v^2 K/N_2))$
- > Linear independence: $O(r^2 \mu_v max(\mu_u, r\mu_v K/N_2))$

➤Computation complexity:

> Column sparse: 0(rmnT)

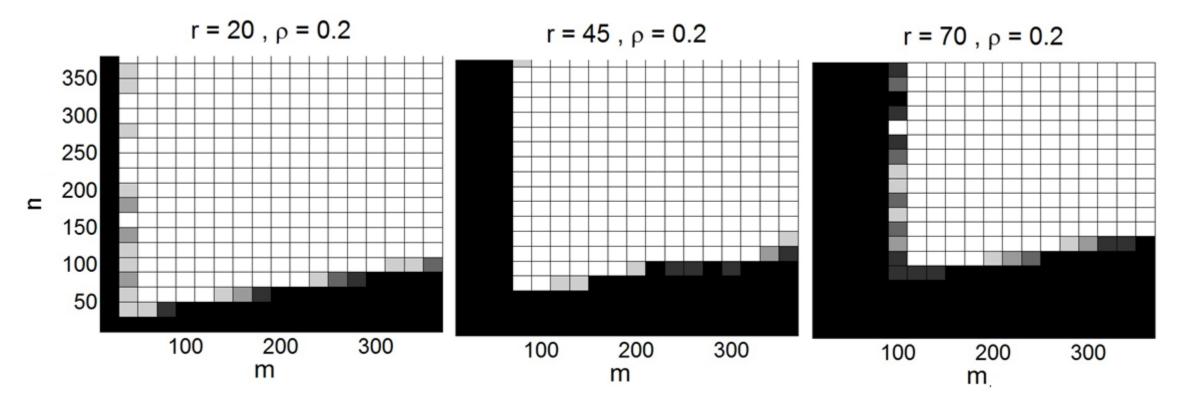
> Linear independence: $O(rm^2n)$

Both m and n were shown to be independent from data size.

Numerical Experiment-Phase transition

with different values for the rank of L

 $\mathbf{D} \in \mathbb{R}^{2000 \times 4000}$



Numerical Experiment-Phase transition

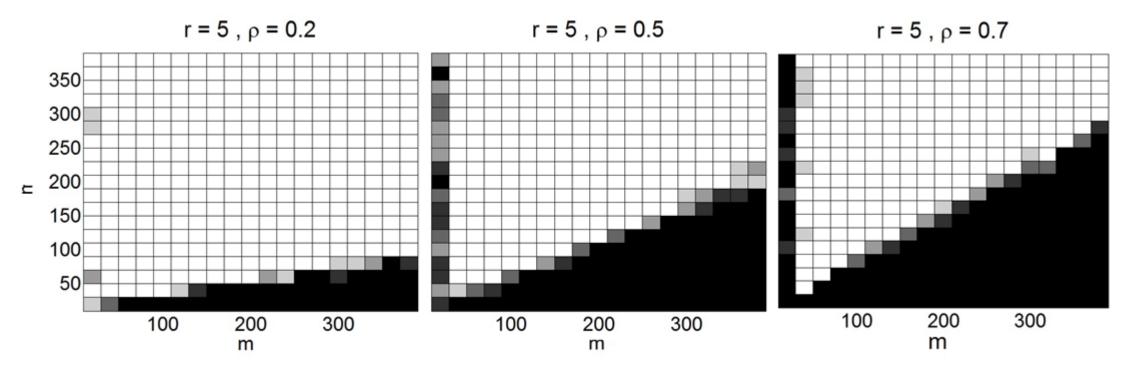
with different data dimensions

 $N_1 = N_2 / 2 = 50000$ $N_1 = N_2 / 2 = 20000$ $N_1 = N_2 / 2 = 2000$ m m m

Numerical Experiment-Phase transition

with different $\rho = \frac{K}{N_2}$

 $\mathbf{D} \in \mathbb{R}^{2000 \times 4000}$



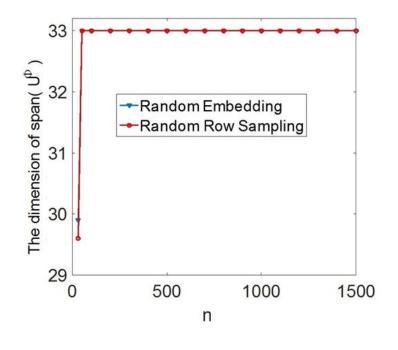
Phase Transition with Real Data

m

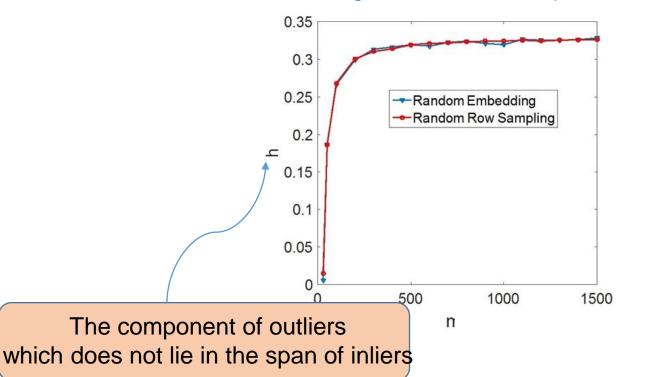
 $\mathbf{D} \in \mathbb{R}^{62 \times 512}$ r ≈ 3

Row Sampling vs Random Embedding

Preserving the low rank component



Preserving the low rank component



Thank you.

Questions?!

New Result

➤The computation and sample complexity for exact subspace recovery is almost independent from the size of data.

Sample complexity

- > Column sparse: $O(r^2 \mu_u \max(\mu_v, r \mu_v^2 K/N_2))$
- > Linear independence: $O(r^2 \mu_v max(\mu_u, r\mu_v K/N_2))$

➤Computation complexity:

> Column sparse: 0(rmnT)

> Linear independence: $O(rm^2n)$

Both m and n were shown to be independent from data size.