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Motivation
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» Big data, machine learning = non-convex, high-dim. optimization.

» Decentralized/multi-agent opt. exploits the collective computation power
and allows sharing of data among the agents.
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Problem Setup

Local loss function fl(e)

» G = (V, E) - connected graph with N agents.

» We consider:
min F(6 Zfl st. 0eC. (P1)

OcR4

» fi: R - R - smooth loss function of agent ¢ ~ data owned by agent i
(possibly non-convex).
» C C R? - convex and compact constraint (~regularization).

» Goal: tackle (P1) with agents only communicating on G.
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Prior Works

» Proximal/Projected gradient (PG) — [RNV12, JXM14, SLWY15]

» works for time varying graph and asynchronous algorithm.

» most analysis only work for convex problems except for [BJ13, GL15].
» Primal-dual approach — [CNS14, Hon16]

» able to handle more complicated constraints.

> requires convexity except for [Hon16].
» Projection-free/Frank-Wolfe (FW) — [Jag13]

» efficient for high dimensional problems which are costly to run PG on.
» centralized algorithm for convex opt. except for [LJ16, RSPS16].

» Others —

» second order method [LS13].
» decomposition by block coordinate descent [LS16].
» convergence rates are not analyzed in these works.
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Prior Works

» Projection-free/Frank-Wolfe (FW) — [Jag13]

» This work: decentralized FW & its convergence for non-convex opt.
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Curse of Dimensionality — Why projection-free?

» Decentralized PG algorithm [RNv12] — for all ¢ € [N] and v € (0,1],

0 LocaNg({8f}yen) » 6 e Pe (8- VAi8)).

e.g., by gossiping: Z;\; Wi 9§ Projection Operator

» Computing P¢ : R4 — R? may require substantial complexity, e.g.,
» If C is the trace-norm ball for my x mo matrices with radius r, then
Pe(0) =UXTVT, BT = Diag(max{0,a(8) — \*(r)1}) , (1)

where U, V are left/right singular vectors of 8 € R™*™2, \*(r) > Ois a
Lagrangian multiplier and o (0) are the singular values of .
» requires the Full SVD = O((m4 A m2)®) per iteration & per agent.

» Frank-Wolfe (F\W, a.k.a. projection-free) optimization reduces per
iteration complexity to O(mq A mg) for the example above.
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The centralized FW Algorithm

» The (centralized) FW algorithm — ~; € (0,1] is a step size,
0t — (1— 0" + v,at where a' = argmingec (a, VF(8)) . (2)

» Update direction a ~ most correlated vector in C with negative gradient.

» Param. update: 8t is a convex combination between a! and 6*.

Convergence of (centralized) FW algorithm

> If (@) is convex and smooth, and ~; = 1/¢, then
F(6%) — F(6*) = O(1/t) [Fwse], where 6* is an optimal solution to (P1).

> If (@) is non-convex and smooth, and v; = t~* with a > 0.5, then the
limit points of the sequence {0*}$2, are stationary points of (P1) WLSM16].
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Advantage of FW over PG

» The (centralized) FW algorithm — ~; € (0,1] is a step size,

0 (1—7,)0" + v,a' where a' = argmingee (a, VF(6?)) .

» Requires only a Linear Optimization (LO) \_/

» This LO step ‘replaces’ the projection operation in PG.

» If C is the trace-norm ball for my x my matrices with radius r, then
t T
a = —7r- U,

: ©)

where w1, v1 are the top left/right singular vectors.

» requires only Principal Component = O(my A my) per iteration.
» recall that the PG method has O((m1 A my)®) per iteration.
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A Perturbed Frank-Wolfe Algorithm

» Let 8 := (1/N) Zj _, 8%. Consider a perturbed FW algorithm —

0?‘1 — (1—7)0! +y:at where al «+ argmingec (@, VIF) , (4)

where 8! and V! F are perturbed version of 8¢ and VF(6?):

7% (1/N)> _1 i

6! vtF~ (1/N) S, V£i(6h) ~VF(@').

» Special case: when both approxma‘uons are exact

» Eq. (4) is equivalent to a centralized FW on the iterates {6°}52,.

» The iterates {6!},>1 ~ running perturbed FW on {6'};>1.
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Convergence Result (1)

» Assuming that the approximation accuracy improves with ¢,

H1: |6} -6 < Cyt= and |VIF— N Ej\; ij(éﬁ)H <Ot .

Theorem 1 (Convergence of perturbed FW)
Suppose that F'is L-smooth, G-Lipschitz and H1 holds. With v, = ¢t~%, a € [0.5,1):

min _max (VF(8"),0" —6) <
te[T/2+1,T] 6€C
1 1-«

T o @ray  (O7+ (172 +25(Cy + LCy) og2)

©)

forall T > 6, where p := supg: gec, oo 16 — 6’ |l2.

» In [WLSM16], we also show that the limit points of the sequence {6},
are stationary points of (P1) if « > 0.5.
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Proof |dea

Define g; := maxgec(VF(0?), 8" — 0). With L-smoothness of F', we have

_ _ L72
F(8") < F(8,) = yge +267°5- (Cyt ™ + L-Cypt ™) +2° =1 . (6)
This implies
T T B B
> owe<s > (0 FO)-FET)  +01). @)
t=T/2+1 t=T/2+1 o~

terms can be cancelled = bounded by Gp.

» By definition, we have ¢g; > 0 for all ¢.
> Left hand side is lower bounded by Q(T"~%) - min;e(r/241,7] 9t-

» Right hand side is upper bounded by O(1).
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Convergence Result (2)

v

Under H1, for « € [0.5,1), the perturbed FW algorithm yields

min _max (VF(),0' —0) = 0(1/T""*), VT >6,
te[T/2-41,T) 8€C

:=FW gap (a.k.a. ‘duality’ gap)

v

If the FW gap becomes zero, then

(VE(6'),6' —8) <0,V0cC.

v

— The parameter 8" in the above is a stationary point to (P1).
Fastest rate is when o = 0.5, giving us O(1/V/T).

Remaining task — how do we satisfy H1?

v

v

v

Needs approximate averages ', + Zf\; f:(6%) = Gossiping!
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Decentralized FW (DeFW) algorithm via Gossiping

» W e RY*N is doubly stochastic and W;; = 01iff ij ¢ E.

» Decentralized algorithm that relies on in-network computation:

| Consensus: parameter average
/

Consensus Step: (to get 8¢ with H1, i.e., ||8f — 6| = O(t~))

0.° « 6!, repeat L, times (0,7« S W;;00°) | 6 67"
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Decentralized FW (DeFW) algorithm via Gossiping

» W e RY*N is doubly stochastic and W;; = 01iff ij ¢ E.

» Decentralized algorithm that relies on in-network computation:

V§:(6})

==~]

~ = e

g o

| Aggregate: gradient average

Aggregate Step: (to get VIF with H1)

Vi°F « V £i(6}), repeat L, times (Vy“'F « YN Wi, Vi'F) | VIF « VIHF .
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Decentralized FW (DeFW) algorithm via Gossiping

» W e RY*N is doubly stochastic and W;; = 01iff ij ¢ E.

» Decentralized algorithm that relies on in-network computation:

FW update
Consensus: parameter average Aggregate: gradient average (independently compute LO, ...)

FW update:

0« (1— )8! +v.al where a! = argmingec {(a, VIF) .

(3
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DeFW Algorithm via Gossiping — Convergence

» Gossip average consensus (GAC) is applied to obtain 6!, ViF.

» The GAC protocol converges geometrically in L.

Convergence of DeFW
Set Ly = (—a/log(c2(W))) - log t, the perturbed iterates track averages as [BGPS06]:

IVIF = N7, V£5(67) = 0(t™®) and ||6] - 6| = O(t™®) .

As a corollary, H1 is satisfied and Theorem 1 holds for DeFW.

» Drawback: number of information exchange per iteration L; grows with
tas L; x logt.
> In [WLSM16], we propose an improved DeFW algorithm which only requires
a constant no. of info. exchange L; = L.
» Key idea: using memory from the previous iteration.
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Example: Sparse+Low Rank Matrix Completion (MC)

= d B
? ?

Outliers contamination in observation

B The noise is “sparse”
"SRN
4 Yo = [0 + 25 OP(Z A0 =p<]
H°E- ° ’
Possible scenario: data corruption in the memory, ...
Low rank matrix @*

» Low rank matrix 8* € R™*™2 is partially observed + sparse noise.

DeFW: A Projection-free Algo. for Non-convex Opt.

Application: Robust matrix completion 15/20



Example: Sparse+Low Rank Matrix Completion (MC)

1—e¢

~] s

17( (z 2yt
N/ x

> Let Q; C [my] x [myo] be the observation set for agent 4, we tackle:

min Z > (1—exp(=([0lks — Yio)?/ou)) st 0,1 <7 . (8)

Rm1 X”YLZ
o i=1 (k,1)€Q;

» |t has a negated Gaussian loss & is a non-convex problem!
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Numerical Experiment

v

Simulate G as an Erdos-Renyi graph with N = 50 and connectivity 0.1.

v

Weights on the matrix W are found with the Metropolis-Hastings rule.
For the DeFW algorithm, we set v; = %7, L; = [5+ 0.75log t].
Sparse+low-rank MC problem for two datasets —
» Synthetic dataset: m1 = 100, m, = 250, |2;| = 500 and rank(6*) = 10.
» movielens100k dataset (training): m1 = 943 users, mo = 1682 movies and
|©2;] = 1600 movie ratings from different users.

v

v

Two settings tested — (i) noiseless; (ii) sparse-noise (Z, = psZ, such that
ps ~ B(0.1), Z, ~ N(0,5)).

Test metrics — (i) test MSE, i.e., MSE evaluated on the testing set

[md] x [ma] \ Q; (i) FW gap, i.e., maxgec(VF(8),0' — ).

v

v
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Synthetic dataset
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(Left) noiseless observations; (Right) outlier-contaminated observations. Set o, = 5in (8).

» DeFW algorithms converge for both convex and non-convex loss (FW gap — 0).
» Negated Gaussian loss (non-convex) formulation is more robust to sparse noise.
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Real dataset (movielens100k)
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(Left) noiseless observations; (Right) outlier-contaminated observations. Set o, = 5in (8).

» Similar observations as in the synthetic data case.
> In practice, DeFW is ~20-30 times faster than D-PG in computation time.
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Conclusions

» We have proposed a decentralized, projection-free algorithm with
convergence guarantee for non-convex optimization.

» The convergence results are new for projection-free algorithms in the
centralized case; see recent works in [LJ16, RSPS16].

» The convergence rate is O(1/v/T) ~ centralized PG analyzed in [GL15].

Future works —
» Source-privacy preserving low rank regression (submitted to ICASSP17).
» Asynchronous DeFW for time varying graph.

» Extension to primal dual optimization.

DeFW: A Projection-free Algo. for Non-convex Opt. Conclusions 19/20



[BGPS06]

[BJ13]

[CNS14]

[EV76]

[FW56]

[GL15]

[Hon16]

[Jag13]

Thank you! Questions?

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and D. Shah.
Randomized gossip algorithms.
IEEE Trans. Inf. Theory, 52(6):2508-2530, June 2006.

Pascal Bianchi and J. Jakubowicz.

Convergence of a multi-agent projected stochastic gradient
algorithm for non-convex optimization.

IEEE Trans. Autom. Control, 58(2):391-405, Feb 2013.

T-H. Chang, A. Nedic, and A. Scaglione.

Distributed constrained optimization by consensus-based
primal-dual perturbation method.

IEEE Trans. Autom. Control, 59(6):1524-1538, June 2014

Yu. M. Ermol’ev and P. |. Verchenko.

A linearization method in limiting extremal problems.
Cybernetics, 12(2):240-245, 1976.

M. Frank and P. Wolfe.

An algorithm for quadratic programming.

Naval Res. Logis. Quart., 1956.

S. Ghadimi and G. Lan.

Accelerated gradient methods for nonconvex nonlinear and
stochastic programming.

Mathematical Programming, 156(1):59-99, Feb 2015.

M. Hong.

Decomposing linearly constrained nonconvex problems by a
proximal primal dual approach: Algorithms, convergence, and
applications.

CoRR, abs/1604.00543, Apr 2016.

M. Jaggi.

Revisiting Frank-Wolfe: Projection-free sparse convex
optimization.

In ICML, 2013,

DeFW: A Projection-free Algo. for Non-convex Opt.

[UXM14]

[LJ16]

[LS13]

[LS16]

[RNV12]

[RSPS16]

[SLWY15]

[WLSM16]

Dusan Jakovetic, Joao Xavier, and Jose M. F. Moura.
Fast distributed gradient methods.
IEEE Trans. Autom. Control, 59(5):1131-1146, May 2014

S. Lacoste-Julien.
Convergence rate of frank-wolfe for non-convex objectives.
CoRR, July 2016.

Xiao Li and Anna Scaglione.

Convergence and applications of a gossip based gauss
newton algorithm.

IEEE Trans. Signal Process., 61(21):5231-5246, Nov 2013.
Paolo Di Lorenzo and Gesualdo Scutari.

Next: In-network nonconvex optimization.

IEEE Trans. on Signal and Info. Process. over Networks,
2(2):120-136, June 2016.

S. 8. Ram, A. Nedic, and V. V. Veeravalli.

A new class of distributed optimization algorithms : application
to regression of distributed data.

Optimization Methods and Software, (1):37-41, February
2012.

S. J. Reddi, S. Sra, B. Poczos, and A. Smola.

Stochastic frank-wolfe methods for nonconvex optimization.
CoRR, July 2016.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin.

A Proximal Gradient Algorithm for Decentralized Composite
Optimization.

IEEE Trans. on Signal Process., pages 1-11, 2015.

H.-T. Wai, Jean Lafond, Anna Scaglione, and Eric Moulines.
Decentralized projection-free optimization for convex and
non-convex problems.

CoRR, December 2016

Conclusions 20/20



	Introduction
	Proposed DeFW algorithm
	Application: Robust matrix completion
	Numerical Results
	Conclusions

