A Projection-free Decentralized Algorithm for Non-convex Optimization

Hoi-To Wai[‡], Anna Scaglione[‡], Jean Lafond[†] and Eric Moulines[#]

[‡]School of ECEE, Arizona State University, USA. [†]Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, France. [#]CMAP, Ecole Polytechnique, Palaiseau, France.

Acknowledgement: Direction Générale de l'Armement and the labex LMH (ANR-11-LABX-0056-LMH), NSF CCF-1011811.

Motivation

- **b** Big data, machine learning \implies non-convex, high-dim. optimization.
- Decentralized/multi-agent opt. exploits the collective computation power and allows sharing of data among the agents.

Problem Setup

- G = (V, E) connected graph with N agents.
- We consider:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} F(\boldsymbol{\theta}) := \frac{1}{N} \sum_{i=1}^N f_i(\boldsymbol{\theta}) \text{ s.t. } \boldsymbol{\theta} \in \mathcal{C} .$$
 (P1)

- *f_i* : ℝ^d → ℝ smooth loss function of agent *i* ~ data owned by agent *i* (possibly non-convex).
- $C \subseteq \mathbb{R}^d$ **convex** and **compact** constraint (~regularization).
- ► **Goal**: tackle (P1) with agents **only** communicating on *G*.

Prior Works

Proximal/Projected gradient (PG) — [RNV12, JXM14, SLWY15]

- works for time varying graph and asynchronous algorithm.
- most analysis only work for convex problems except for [BJ13, GL15].
- Primal-dual approach [CNS14, Hon16]
 - able to handle more complicated constraints.
 - requires convexity except for [Hon16].

Projection-free/Frank-Wolfe (FW) — [Jag13]

- efficient for high dimensional problems which are costly to run PG on.
- centralized algorithm for convex opt. except for [LJ16, RSPS16].
- ▶ This work: decentralized FW & its convergence for non-convex opt.

Others –

- second order method [LS13].
- decomposition by block coordinate descent [LS16].
- convergence rates are not analyzed in these works.

Prior Works

- Proximal/Projected gradient (PG) [RNV12, JXM14, SLWY15]
 - works for time varying graph and asynchronous algorithm.
 - most analysis only work for convex problems except for [BJ13, GL15].
- Primal-dual approach [CNS14, Hon16]
 - able to handle more complicated constraints.
 - requires convexity except for [Hon16].

Projection-free/Frank-Wolfe (FW) — [Jag13]

- efficient for high dimensional problems which are costly to run PG on.
- centralized algorithm for convex opt. except for [LJ16, RSPS16].
- **This work**: decentralized FW & its convergence for non-convex opt.
- Others
 - second order method [LS13].
 - decomposition by block coordinate descent [LS16].
 - convergence rates are not analyzed in these works.

Curse of Dimensionality - Why projection-free?

▶ Decentralized PG algorithm [RNV12] — for all $i \in [N]$ and $\gamma_t \in (0, 1]$,

$$\overline{\boldsymbol{\theta}}_{i}^{t} \leftarrow \underbrace{\operatorname{LocalAvg}(\{\boldsymbol{\theta}_{j}^{t}\}_{j \in \mathcal{N}_{i}})}_{\text{e.g., by gossiping: } \sum_{j=1}^{N} W_{ij} \boldsymbol{\theta}_{j}^{t}}, \quad \begin{array}{c} \boldsymbol{\theta}_{i}^{t+1} \leftarrow \underbrace{\mathcal{P}_{\mathcal{C}}}_{\text{Projection Operator}} \left(\overline{\boldsymbol{\theta}}_{i}^{t} - \gamma_{t} \nabla f_{i}(\overline{\boldsymbol{\theta}}_{i}^{t})\right). \end{array}$$

- Computing $\mathcal{P}_{\mathcal{C}}: \mathbb{R}^d \to \mathbb{R}^d$ may require substantial complexity, e.g.,
 - ▶ If C is the trace-norm ball for $m_1 \times m_2$ matrices with radius r, then

$$\mathcal{P}_{\mathcal{C}}(\boldsymbol{\theta}) = \boldsymbol{U}\boldsymbol{\Sigma}^{+}\boldsymbol{V}^{\top}, \ \boldsymbol{\Sigma}^{+} = \mathsf{Diag}(\max\{\mathbf{0}, \boldsymbol{\sigma}(\boldsymbol{\theta}) - \lambda^{\star}(r)\mathbf{1}\}),$$
(1)

where U, V are left/right singular vectors of $\theta \in \mathbb{R}^{m_1 \times m_2}$, $\lambda^*(r) \ge 0$ is a Lagrangian multiplier and $\sigma(\theta)$ are the singular values of θ .

- ▶ requires the **Full SVD** $\implies \mathcal{O}((m_1 \land m_2)^3)$ per iteration & per agent.
- ▶ **Frank-Wolfe** (FW, a.k.a. projection-free) optimization reduces per iteration complexity to $O(m_1 \land m_2)$ for the example above.

Agenda

1 Introduction

- 2 Proposed DeFW algorithm
- 3 Application: Robust matrix completion
- 4 Numerical Results

5 Conclusions

The centralized FW Algorithm

▶ The (centralized) FW algorithm $-\gamma_t \in (0, 1]$ is a step size,

$$\boldsymbol{\theta}^{t+1} \leftarrow (1-\gamma_t)\boldsymbol{\theta}^t + \gamma_t \boldsymbol{a}^t$$
 where $\boldsymbol{a}^t = \arg\min_{\boldsymbol{a} \in \mathcal{C}} \langle \boldsymbol{a}, \nabla F(\boldsymbol{\theta}^t) \rangle$. (2)

- Update direction $a^t \approx \text{most correlated vector in } C$ with *negative gradient*.
- ▶ Param. update: θ^{t+1} is a convex combination between a^t and θ^t .

Convergence of (centralized) FW algorithm

- ► If $F(\theta)$ is convex and smooth, and $\gamma_t = 1/t$, then $F(\theta^t) - F(\theta^*) = O(1/t)$ [FW56], where θ^* is an optimal solution to (P1).
- If F(θ) is non-convex and smooth, and γ_t = t^{-α} with α > 0.5, then the limit points of the sequence {θ^t}[∞]_{t=1} are stationary points of (P1) [WLSM16].

Advantage of FW over PG

▶ The (centralized) FW algorithm $-\gamma_t \in (0, 1]$ is a step size,

 $\boldsymbol{\theta}^{t+1} \leftarrow (1-\gamma_t)\boldsymbol{\theta}^t + \gamma_t \boldsymbol{a}^t$ where $\boldsymbol{a}^t = \operatorname{arg\,min}_{\boldsymbol{a}\in\mathcal{C}} \langle \boldsymbol{a}, \nabla F(\boldsymbol{\theta}^t) \rangle$.

- Requires only a Linear Optimization (LO)
 - ► This LO step 'replaces' the projection operation in PG.
 - ▶ If C is the trace-norm ball for $m_1 \times m_2$ matrices with radius r, then

$$\boldsymbol{a}^{t} = -\boldsymbol{r} \cdot \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\top} , \qquad (3)$$

where u_1, v_1 are the top left/right singular vectors.

- ▶ requires only **Principal Component** $\implies O(m_1 \land m_2)$ per iteration.
- ▶ recall that the PG method has $\mathcal{O}((m_1 \land m_2)^3)$ per iteration.

A Perturbed Frank-Wolfe Algorithm

▶ Let $\bar{\theta}^t := (1/N) \sum_{j=1}^N \theta_j^t$. Consider a perturbed FW algorithm -

$$\boldsymbol{\theta}_i^{t+1} \leftarrow (1-\gamma_t) \bar{\boldsymbol{\theta}}_i^t + \gamma_t \boldsymbol{a}_i^t$$
 where $\boldsymbol{a}_i^t \leftarrow \operatorname{arg\,min}_{\boldsymbol{a} \in \mathcal{C}} \langle \boldsymbol{a}, \overline{\nabla_i^t F} \rangle$, (4)

where $\bar{\theta}_i^t$ and $\overline{\nabla_i^t F}$ are perturbed version of $\bar{\theta}^t$ and $\nabla F(\bar{\theta}^t)$:

$$\bar{\boldsymbol{\theta}}_{i}^{t} \approx (1/N) \sum_{j=1}^{N} \boldsymbol{\theta}_{j}^{t} \quad \overline{\nabla_{i}^{t}F} \approx (1/N) \sum_{j=1}^{N} \nabla f_{j}(\bar{\boldsymbol{\theta}}_{j}^{t}) \approx \nabla F(\bar{\boldsymbol{\theta}}^{t}) .$$

- Special case: when both approximations are exact
 - Eq. (4) is equivalent to a centralized FW on the iterates $\{\bar{\theta}^t\}_{t=1}^{\infty}$.
- The iterates $\{\bar{\theta}_i^t\}_{t\geq 1} \approx$ running *perturbed* FW on $\{\bar{\theta}^t\}_{t\geq 1}$.

Convergence Result (1)

• Assuming that the approximation accuracy improves with t,

$$\mathbf{H1}: \|\bar{\boldsymbol{\theta}}_i^t - \bar{\boldsymbol{\theta}}^t\| \le C_g t^{-\alpha} \text{ and } \|\overline{\nabla_i^t F} - N^{-1} \sum_{j=1}^N \nabla f_j(\bar{\boldsymbol{\theta}}_j^t)\| \le C_p t^{-\alpha}$$

Theorem 1 (Convergence of perturbed FW)

Suppose that F is L-smooth, G-Lipschitz and H1 holds. With $\gamma_t = t^{-\alpha}$, $\alpha \in [0.5, 1]$:

$$\min_{t \in [T/2+1,T]} \max_{\boldsymbol{\theta} \in \mathcal{C}} \langle \nabla F(\bar{\boldsymbol{\theta}}^t), \bar{\boldsymbol{\theta}}^t - \boldsymbol{\theta} \rangle \leq \frac{1}{T^{1-\alpha}} \cdot \frac{1-\alpha}{(1-(2/3)^{1-\alpha})} \cdot \left(G\bar{\rho} + (L\bar{\rho}^2/2 + 2\bar{\rho}(C_g + LC_p))\log 2 \right),$$
(5)

for all $T \geq 6$, where $\bar{\rho} := \sup_{\theta', \theta \in \mathcal{C}, \ \theta \neq \theta'} \|\theta - \theta'\|_2$.

In [WLSM16], we also show that the limit points of the sequence {θ^t}_{t=1}[∞] are stationary points of (P1) if α > 0.5.

Proof Idea

Define $g_t := \max_{\theta \in \mathcal{C}} \langle \nabla F(\overline{\theta}^t), \overline{\theta}^t - \theta \rangle$. With *L*-smoothness of *F*, we have

$$F(\bar{\theta}^{t+1}) \le F(\bar{\theta}_t) - \gamma_t g_t + 2t^{-\alpha}\bar{\rho} \cdot (C_g t^{-\alpha} + L \cdot C_p t^{-\alpha}) + t^{-2\alpha} \frac{L\bar{\rho}^2}{2} .$$
 (6)

This implies

$$\sum_{t=T/2+1}^{T} \gamma_t g_t \le \sum_{t=T/2+1}^{T} \left(\underbrace{F(\bar{\theta}^t) - F(\bar{\theta}^{t+1})}_{\text{terms can be cancelled} \Longrightarrow \text{ bounded by } G_{\bar{P}}}_{O(t^{-2\alpha})} \right).$$
(7)

- By definition, we have $g_t \ge 0$ for all t.
- Left hand side is **lower bounded** by $\Omega(T^{1-\alpha}) \cdot \min_{t \in [T/2+1,T]} g_t$.
- Right hand side is **upper bounded** by $\mathcal{O}(1)$.

Convergence Result (2)

▶ Under H1, for $\alpha \in [0.5, 1)$, the perturbed FW algorithm yields

$$\min_{t \in [T/2+1,T]} \max_{\boldsymbol{\theta} \in \mathcal{C}} \langle \nabla F(\bar{\boldsymbol{\theta}}^t), \bar{\boldsymbol{\theta}}^t - \boldsymbol{\theta} \rangle = \mathcal{O}(\mathbf{1}/T^{1-\alpha}), \ \forall \ T \ge \mathbf{6} \ ,$$
$$:= \mathbf{FW} \text{ gap (a.k.a. 'duality' gap)}$$

If the FW gap becomes zero, then

$$\langle \nabla F(\bar{\boldsymbol{\theta}}^t), \bar{\boldsymbol{\theta}}^t - \boldsymbol{\theta} \rangle \leq \mathbf{0}, \; \forall \; \boldsymbol{\theta} \in \mathcal{C} \; .$$

- \implies The parameter $\bar{\theta}^t$ in the above is a stationary point to (P1).
- Fastest rate is when $\alpha = 0.5$, giving us $\mathcal{O}(1/\sqrt{T})$.
- Remaining task how do we satisfy H1?
- ▶ Needs approximate averages $\bar{\theta}^t$, $\frac{1}{N}\sum_{i=1}^N f_i(\bar{\theta}_i^t) \Longrightarrow$ Gossiping!

Decentralized FW (DeFW) algorithm via Gossiping

- $\boldsymbol{W} \in \mathbb{R}^{N \times N}_+$ is doubly stochastic and $W_{ij} = \boldsymbol{0}$ iff $ij \notin E$.
- Decentralized algorithm that relies on *in-network* computation:

Consensus Step: (to get $\bar{\theta}_i^t$ with H1, i.e., $\|\bar{\theta}_i^t - \bar{\theta}^t\| = O(t^{-\alpha})$)

$$ar{ heta}_i^{t,0} \leftarrow heta_i^t$$
, repeat L_t times $(ar{ heta}_i^{t,\ell+1} \leftarrow \sum_{j=1}^N W_{ij}ar{ heta}_j^{t,\ell})$, $ar{ heta}_i^t \leftarrow ar{ heta}_i^{t,L_t}$.

Decentralized FW (DeFW) algorithm via Gossiping

- $W \in \mathbb{R}^{N \times N}_+$ is doubly stochastic and $W_{ij} = \mathbf{0}$ iff $ij \notin E$.
- > Decentralized algorithm that relies on *in-network* computation:

Aggregate Step: (to get $\overline{\nabla_i^t F}$ with H1)

$$\overline{\nabla_i^{t,0}F} \leftarrow \nabla f_i(\bar{\theta}_i^t), \text{ repeat } L_t \text{ times } \left(\overline{\nabla_i^{t,\ell+1}F} \leftarrow \sum_{j=1}^N W_{ij}\overline{\nabla_j^{t,\ell}F}\right), \ \overline{\nabla_i^tF} \leftarrow \overline{\nabla_i^{t,L_t}F}$$

Decentralized FW (DeFW) algorithm via Gossiping

- $W \in \mathbb{R}^{N \times N}_+$ is doubly stochastic and $W_{ij} = \mathbf{0}$ iff $ij \notin E$.
- ► Decentralized algorithm that relies on *in-network* computation:

FW update:

$$\boldsymbol{\theta}_i^{t+1} \leftarrow (1-\gamma_t) \bar{\boldsymbol{\theta}}_i^t + \gamma_t \boldsymbol{a}_i^t$$
 where $\boldsymbol{a}_i^t = \operatorname{arg\,min}_{\boldsymbol{a} \in \mathcal{C}} \langle \boldsymbol{a}, \overline{\nabla_i^t F} \rangle$

DeFW Algorithm via Gossiping - Convergence

- Gossip average consensus (GAC) is applied to obtain $\bar{\theta}_i^t$, $\overline{\nabla}_i^t F$.
- The GAC protocol converges **geometrically** in L_t .

Convergence of DeFW

Set $L_t = (-\alpha/\log(\sigma_2(W))) \cdot \log t$, the perturbed iterates track averages as [BGPS06]:

$$\left\|\overline{\nabla_i^t F} - N^{-1} \sum_{j=1}^N \nabla f_j(\bar{\theta}_j^t) \right\| = \mathcal{O}(t^{-\alpha}) \text{ and } \left\|\bar{\theta}_i^t - \bar{\theta}^t\right\| = \mathcal{O}(t^{-\alpha})$$

As a corollary, H1 is satisfied and Theorem 1 holds for DeFW.

- **Drawback**: number of information exchange per iteration L_t grows with t as $L_t \propto \log t$.
 - ▶ In [WLSM16], we propose an improved DeFW algorithm which only requires a **constant** no. of info. exchange $L_t = L$.
 - ► Key idea: using memory from the previous iteration.

Example: Sparse+Low Rank Matrix Completion (MC)

• Low rank matrix $\theta^* \in \mathbb{R}^{m_1 \times m_2}$ is partially observed + sparse noise.

• Let $\Omega_i \subseteq [m_1] \times [m_2]$ be the observation set for agent *i*, we tackle:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{m_1 \times m_2}} \sum_{i=1}^N \sum_{(k,l) \in \Omega_i} \left(1 - \exp\left(-([\boldsymbol{\theta}]_{k,l} - Y_{k,l})^2 / \sigma_i\right) \right) \text{ s.t. } \|\boldsymbol{\theta}\|_{\sigma,1} \le r .$$
(8)

It has a negated Gaussian loss & is a non-convex problem!

Example: Sparse+Low Rank Matrix Completion (MC)

• Low rank matrix $\theta^* \in \mathbb{R}^{m_1 \times m_2}$ is partially observed + sparse noise.

• Let $\Omega_i \subseteq [m_1] \times [m_2]$ be the observation set for agent *i*, we tackle:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{m_1 \times m_2}} \sum_{i=1}^N \sum_{(k,l) \in \Omega_i} \left(1 - \exp\left(-([\boldsymbol{\theta}]_{k,l} - Y_{k,l})^2 / \sigma_i \right) \right) \text{ s.t. } \|\boldsymbol{\theta}\|_{\sigma,1} \le r .$$
(8)

It has a negated Gaussian loss & is a non-convex problem!

Numerical Experiment

- Simulate G as an Erdos-Renyi graph with N = 50 and connectivity 0.1.
- Weights on the matrix W are found with the Metropolis-Hastings rule.
- For the DeFW algorithm, we set $\gamma_t = t^{-0.75}$, $L_t = \lfloor 5 + 0.75 \log t \rfloor$.
- Sparse+low-rank MC problem for two datasets
 - ► Synthetic dataset: $m_1 = 100$, $m_2 = 250$, $|\Omega_i| = 500$ and $rank(\theta^*) = 10$.
 - movielens100k dataset (training): $m_1 = 943$ users, $m_2 = 1682$ movies and $|\Omega_i| = 1600$ movie ratings from different users.
- ► Two settings tested (i) noiseless; (ii) sparse-noise ($Z_s = p_s \tilde{Z}_s$ such that $p_s \sim B(0.1), \tilde{Z}_s \sim \mathcal{N}(0, 5)$).
- ► Test metrics (i) *test MSE*, *i.e.*, MSE evaluated on the testing set $[m_1] \times [m_2] \setminus \Omega$; (ii) *FW gap*, *i.e.*, $\max_{\theta \in C} \langle \nabla F(\bar{\theta}^t), \bar{\theta}^t \theta \rangle$.

Synthetic dataset

(Left) noiseless observations; (Right) outlier-contaminated observations. Set $\sigma_i = 5$ in (8).

- ▶ DeFW algorithms converge for both convex and non-convex loss (FW gap \rightarrow 0).
- ▶ Negated Gaussian loss (non-convex) formulation is more robust to sparse noise.

Real dataset (movielens100k)

(Left) noiseless observations; (Right) outlier-contaminated observations. Set $\sigma_i = 5$ in (8).

- Similar observations as in the synthetic data case.
- ▶ In practice, DeFW is ~20-30 times faster than D-PG in computation time.

Conclusions

- ► We have proposed a decentralized, projection-free algorithm with convergence guarantee for non-convex optimization.
- The convergence results are new for projection-free algorithms in the centralized case; see recent works in [LJ16, RSPS16].
- ► The convergence rate is $O(1/\sqrt{T}) \approx$ centralized PG analyzed in [GL15].

Future works -

- Source-privacy preserving low rank regression (submitted to ICASSP17).
- Asynchronous DeFW for time varying graph.
- Extension to primal dual optimization.

Thank you! Questions?

[BGPS06]	Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE Trans. Inf. Theory, 52(6):2508–2530, June 2006.	[JXM14]	Dusan Jakovetic, Joao Xavier, and Jos Fast distributed gradient methods. <i>IEEE Trans. Autom. Control</i> , 59(5):113	se M. F. Moura.
[BJ13]	Pascal Bianchi and J. Jakubowicz. Convergence of a multi-agent projected stochastic gradient algorithm for non-convex optimization.	[LJ16]	S. Lacoste-Julien. Convergence rate of frank-wolfe for no <i>CoRR</i> , July 2016.	on-convex objectives.
[CNS14]	IEEE Trans. Autom. Control, 58(2):391–405, Feb 2013. T-H. Chang, A. Nedic, and A. Scaglione. Distributed constrained optimization by consensus-based primal-dual perturbation method.	[LS13]	Xiao Li and Anna Scaglione. Convergence and applications of a go newton algorithm. IEEE Trans. Signal Process., 61(21):52	essip based gauss 231–5246, Nov 2013.
[EV76]	IEEE Trans. Autom. Control, 59(6):1524–1538, June 2014. Yu. M. Ermol'ev and P. I. Verchenko. A linearization method in limiting extremal problems. Cybernetics, 12(2):240–245, 1976.	[LS16]	Paolo Di Lorenzo and Gesualdo Scuta Next: In-network nonconvex optimizal IEEE Trans. on Signal and Info. Proces 2(2):120–136, June 2016.	ıri. tion. ıs. <i>over Networks</i> ,
[FW56]	M. Frank and P. Wolfe. An algorithm for quadratic programming. <i>Naval Res. Logis. Quart.</i> , 1956.	[RNV12]	S. S. Ram, A. Nedic, and V. V. Veerava A new class of distributed optimization to regression of distributed data.	alli. 1 algorithms : application
[GL15]	S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic programming. <i>Mathematical Programming</i> , 156(1):59–99, Feb 2015.	[RSPS16]	Optimization Methods and Software, (1):37–41, February 2012. S. J. Reddi, S. Sra, B. Poczos, and A. Smola. Stochastic frank-wolfe methods for nonconvex optimization. CORP. http://doi.org/10.1016/j.	
[Hon16]	M. Hong. Decomposing linearly constrained nonconvex problems by a proximal primal dual approach: Algorithms, convergence, and applications. <i>CoRR</i> , abs/1604.00543, Apr 2016.	[SLWY15]	Wei Shi, Qing Ling, Gang Wu, and Wo A Proximal Gradient Algorithm for Dec Optimization. IEEE Trans. on Signal Process., pages	otao Yin. entralized Composite s 1–11, 2015.
[Jag13]	M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In <i>ICML</i> , 2013.	[WLSM16]	HT. Wai, Jean Lafond, Anna Scaglion Decentralized projection-free optimiza non-convex problems. <i>CoRR</i> , December 2016.	tion for convex and
	DeFW: A Projection-free Algo, for Non-convex Opt.		Conclusions	20 / 20