Wireless Big Data and Network Densification

Wireless big data era: overwhelming data traffic brought by the explosive growth of mobile devices and various application scenarios

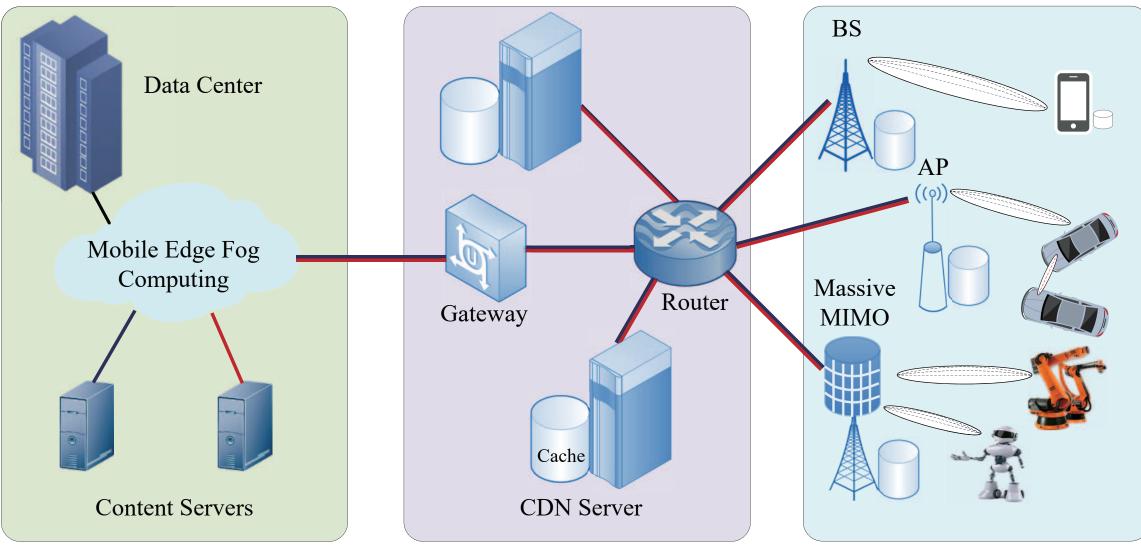


Figure: Massive devices and applications in Fog-RAN.

Key requirements: low-latency, ultra-high data rate, ultra reliability.

Various applications: Internet of Things, mobile virtual reality, autonomous driving etc. **Solution:** Network densification.

Challenge

High-dimensional channel state information at the transmitters (CSIT) acquisition in dense wireless networks for interferences management

Prior Works on CSIT reduction

Prior works: Abundant CSIT \rightarrow Relaxed CSIT

- Perfect CSIT: [Cadambe and Jafar, TIT 08] (IT paper award '09)
- Delayed CSIT: [Maddah-Ali and Tse, TIT 12] (IT & ComSoc paper award '15)
- Alternating CSIT: [Tandon, et al., TIT 13], partial and imperfect CSIT [Shi, et al., TSP 14]

Massive overhead for CSIT acquisition still exists!

Start here \longrightarrow	Applicable?	Prior works
No CSIT	CSIT—→	Perfect CSIT

Topological Interference Management: No CSIT

Partially connected interference channel:

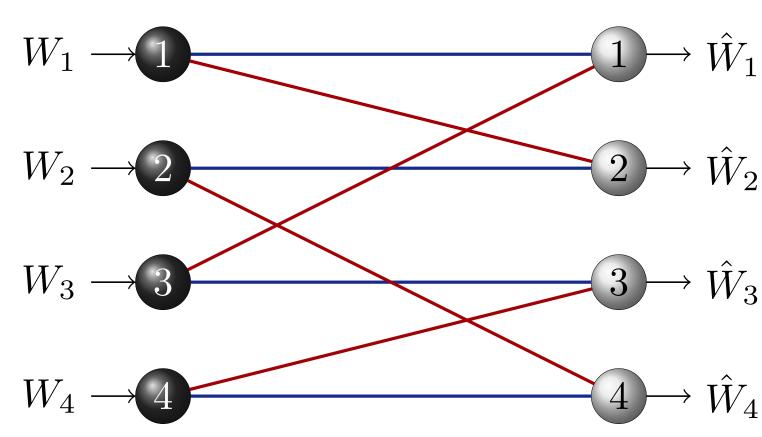


Figure: Blue lines: desired message. Red lines: interference links.

Interference alignment condition without CSIT [1, 2]

 $\int u_i^{\mathsf{H}} v_j = 0, \ \forall j \in \mathcal{V}_i, j \neq i \quad \triangleright \text{ interference cancellation}$

b desired message preservation $\boldsymbol{u}_{i}^{\mathsf{H}}\boldsymbol{v}_{i}\neq0,\ i=1,\cdots,K.$

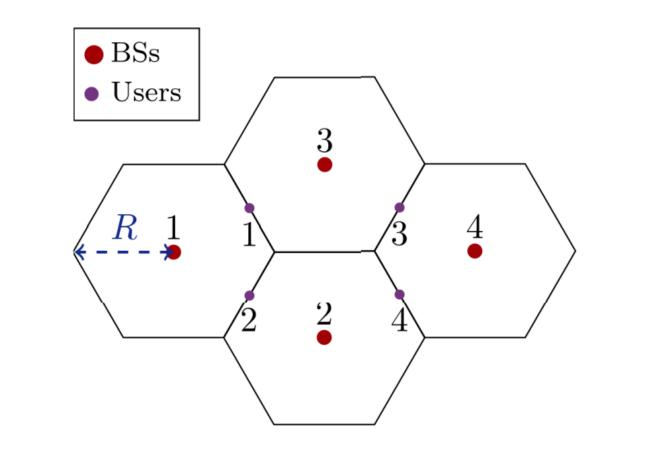
A LOW-RANK APPROACH FOR INTERFERENCE MANAGEMENT IN DENSE WIRELESS NETWORKS

Kai Yang*, Yuanming Shi*, Jun Zhang[†], Zhi Ding[‡], Khaled B. Letaief [†]

*School of Information Science and Technology, ShanghaiTech University [†]Dept. of ECE, The Hong Kong University of Science and Technology [‡]Dept. of ECE, University of California, Davis

Assumption: Mixed Network Connectivity Information

Channel links for each user: strong links (red lines) and weak links (red dashed lines) due to path loss and shadowing, e.g.



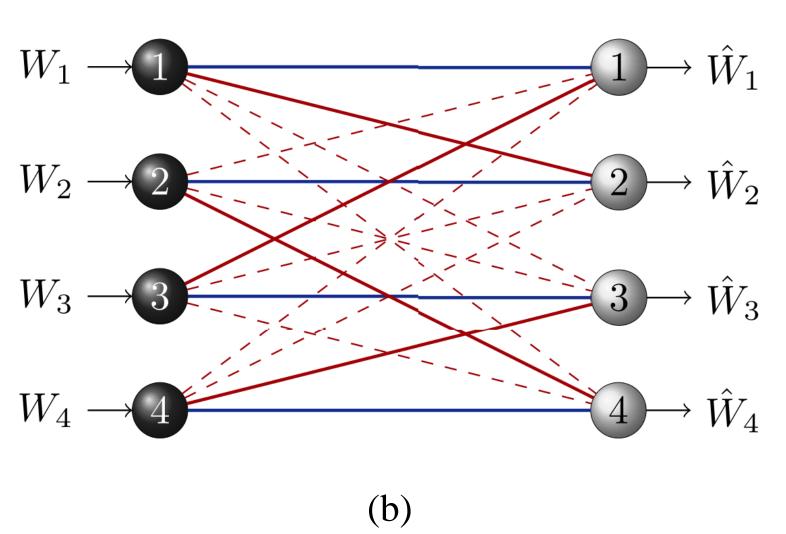


Figure: a) An example of 4 cells case. b) Heterogeneity of channel links.

Mixed Network Connectivity Information: Connectivity information for strong links (\mathcal{V}_i), statistical information for weak links (\mathcal{V}_i) .

Proposed: Interference Leakage Minimization

Goal: Achieve high sum rate per channel use with mixed network connectivity information

$$C_{\text{sum}} = \frac{1}{r} \sum_{i=1}^{K} \log(1 + \text{SINR}_i), \quad \text{SINR}_i = \frac{\left| \boldsymbol{u}_i^{\mathsf{H}} \boldsymbol{v}_i \right|^2 |h_{ii}|^2}{\sigma^2 \left\| \boldsymbol{u}_i \right\|^2 + \sum_{j \neq i} \left| \boldsymbol{u}_i^{\mathsf{H}} \boldsymbol{v}_j \right|^2 |h_{ij}|}$$

Proposed Approach: tradeoff of interference leakage and channel use

$$\min I = \sum_{j \in \overline{\mathcal{V}}_i} \mathbb{E}(|h_{ij}|^2) | \boldsymbol{u}_i^{\mathsf{H}} \boldsymbol{v}$$

$$\min \text{ channel use } r$$

$$\boldsymbol{u}_i^{\mathsf{H}} \boldsymbol{v}_j = 0, \forall j \in \mathcal{V}_i, j \neq i$$

$$\boldsymbol{u}_i^{\mathsf{H}} \boldsymbol{v}_i \neq 0, \ i = 1, \cdots, K$$

Interference leakage minimization

- DoF maximization
- Strong interferences cancellation
- Desired message preservation

 $\leq au_0$

Low Rank Approach: $X = [u_i^{\mathsf{H}} v_i]$

minimize rank
$$(\boldsymbol{X})$$

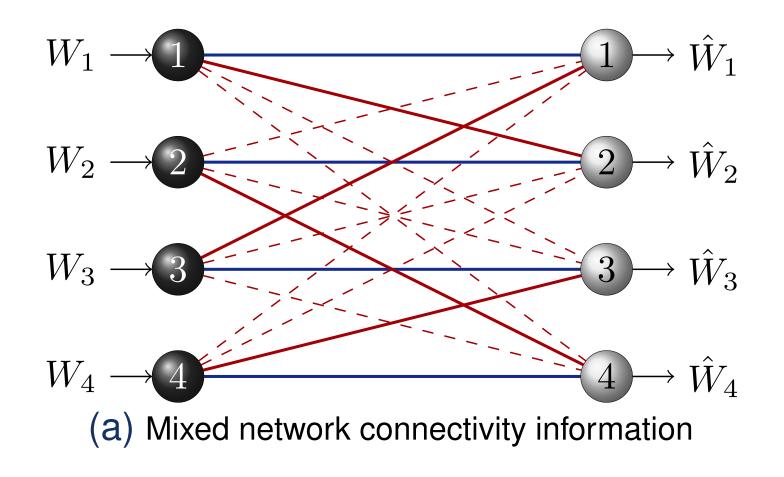
subject to $\mathcal{P}_{\Omega}(\boldsymbol{X}) = \boldsymbol{I},$
 $\sum_{j \in \bar{\mathcal{V}}_i} \mathbb{E}(|h_{ij}|^2) |X_{ij}|^2$

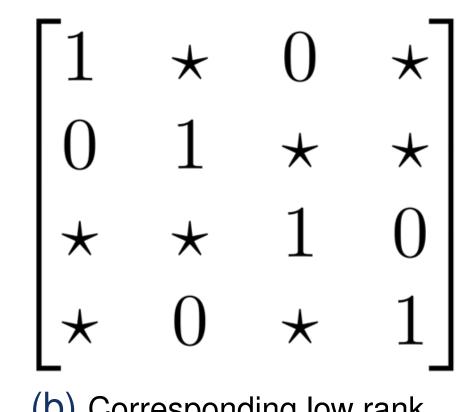
Unique Challenges: non-convex, nuclear norm relaxation always yields identity matrix!

Example: 4 hexagonal cells

For above mentioned cellular network, assuming:

- Strong links: the distance from BS is less than 3R/2.
- Weak links: the distance from BS is greater than or equal to 3R/2.

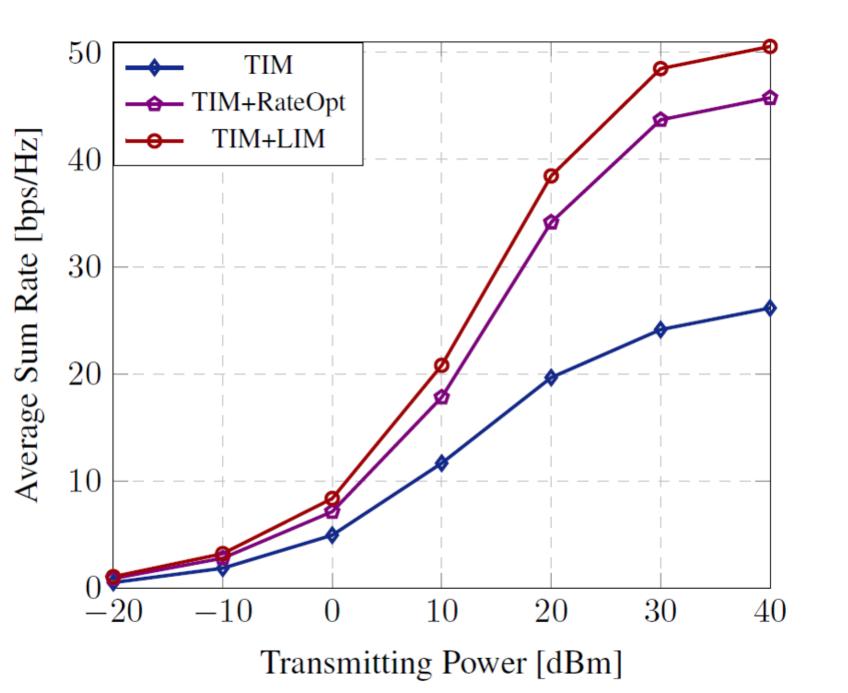




(b) Corresponding low rank matrix recovery problem

1) Find the minimal rank r when strong interferences can be canceled minimize $\operatorname{rank}(\mathbf{X})$ subject to $f(\mathbf{X}; 0) = 0$ 2) Minimize interference leakage under fixed channel use r minimize $f(\mathbf{X}; \lambda)$ subject to $\operatorname{rank}(\mathbf{X}) = r$, Allows for a unified form of minimizing a smooth function $f(\mathbf{X}; \lambda_0)$ under fixed rank constraint	1: Inputs: $K, \Omega, \mathbb{E}(h_{ij} ^2)$ for $\overline{\mathcal{V}}_i$, accuracy 2: Initialize: $r \leftarrow 1$ 3: while $r \leq K$ do 4: Minimize $f(\mathbf{X}; 0)$ under fixed rank r 5: if $ f(\mathbf{X}; 0) _F^2/2 \leq \epsilon_1$ then 6: break; 7: end if 8: $r \leftarrow r + 1$ 9: end while 10: Minimize $f(\mathbf{X}; \lambda)$ under fixed rank r 11: Outputs: r, \mathbf{X}
Riemannian trust region [3] algorithm for fixe \mathscr{P}_{LIM} : minimize $f(\mathbf{X}; \lambda_0)$	I Algorithm ed-rank problem:) subject to rank(\mathbf{X}) = r . \mathcal{V}_x $T_x \mathcal{M} = \mathcal{H}_x \oplus \mathcal{V}_x$ $R_x(\xi_x)$ $T_{[x]}(\mathcal{M}/\sim)$
 Exploit the non-uniqueness of matrix factor 	$ \begin{aligned} & \mathbf{gion \ subproblem} \\ & n(\boldsymbol{\xi}_{\boldsymbol{X}}) \\ & \mathbf{x}(\boldsymbol{\xi}_{\boldsymbol{X}}, \boldsymbol{\xi}_{\boldsymbol{X}}) \leq \delta^2, \end{aligned} $

- "TIM": Setting weak links as zeros [2].
- "TIM+RateOpt": RateOpt is an alternating minimization method [4] with mixed network connectivity information.
- "TIM+LIM": The proposed algorithm.



Conclusions & Possible Extensions

Only some statistical information, big progress!

• Algorithmic advantages on interference management.

Extensions

Although we focus on the single antenna transmitters and users in this work, it can be readily extended to more general cases according to our recent works:

when users are cache-enabled [5].

• both transmitters and users are cache-enabled [6] in MISO channel.

References

[1] S. A. Jafar, "Topological interference management through index coding," IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 529–568, Jan

[2] Y. Shi, J. Zhang, and K. B. Letaief, "Low-rank matrix completion for topological interference management by Riemannian pursuit," IEEE Trans. Wireless Commun., vol. PP, no. 99, pp. 1–1, 2016.

[3] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds. Princeton University Press, 2009.

[4] B. Hassibi, "Topological interference alignment in wireless networks," *Smart Antennas Workshop*, Aug. 2014.

[5] K. Yang, Y. Shi, and Z. Ding, "Low-rank matrix completion for mobile edge caching in Fog-RAN via Riemannian optimization," accepted to IEEE Global Commun. Conf. (GLOBECOM), 2016.

] ——, "Generalized matrix completion for cache-aided Fog-RAN via the Burer-Monteiro approach," submitted to IEEE Inf. Conf. *Commun. (ICC)*, 2017.

Contact Information

Email

Kai Yang: yangkai@shanghaitech.edu.cn

- Yuanming Shi: shiym@shanghaitech.edu.cn
- Jun Zhang: eejzhang@ust.hk
- Zhi Ding: zding@ucdavis.edu
- Khaled B. Letaief: eekhaled@ust.hk

上海科技大学 ShanghaiTech University