Fast Computations for Approximation and Compression in Slepian Spaces

Santhosh Karnik ${ }^{1}$, Zhihui Zhu ${ }^{2}$, Michael B. Wakin ${ }^{2}$, Justin Romberg ${ }^{1}$, Mark A. Davenport ${ }^{1}$
${ }^{1}$ Georgia Institute of Technology
${ }^{2}$ Colorado School of Mines

December 8th, 2016

Outline

- Spectral Leakage
- Slepian Basis
- Fast Computations

Spectral Leakage

Suppose we take N equispaced samples of a bandlimited signal.

$$
\begin{gathered}
x_{c}(t)=\int_{-W / T}^{W / T} X_{c}(F) e^{j 2 \pi F t} d F, t \in \mathbb{R} \\
x[n]=x_{c}(n T), n=0,1, \ldots, N-1
\end{gathered}
$$

If $W=\frac{1}{2}$, we are sampling at the Nyquist rate. We expect N degrees of freedom in \boldsymbol{x}.

If $0<W<\frac{1}{2}$, we are sampling faster than the Nyquist rate. We expect $\approx 2 N W$ degrees of freedom in x.

What basis yields a sparse representation for \boldsymbol{x} ?

Spectral Leakage

$$
\boldsymbol{x}[n]=\cos \left(\frac{2 \pi \cdot 6}{100} n\right), \quad n=0,1, \ldots, 99
$$

Signal

DFT Coefficients

Spectral Leakage

$$
\boldsymbol{x}[n]=\cos \left(\frac{2 \pi \cdot 5.5}{100} n\right), \quad n=0,1, \ldots, 99
$$

Signal

DFT Coefficients

Motivation

The relationship between a discrete signal $x \in \ell_{2}(\mathbb{Z})$ and its discrete time Fourier transform (DTFT) $\widetilde{x} \in L_{2}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$ is given by

$$
\begin{aligned}
& \widetilde{x}(f)=\sum_{n=-\infty}^{\infty} x[n] e^{-j 2 \pi f n} \\
& x[n]=\int_{-1 / 2}^{1 / 2} \widetilde{x}(f) e^{j 2 \pi f n} d f
\end{aligned}
$$

For a given positive integer N and bandlimit $0<W<\frac{1}{2}$, the only signal which is both bandlimited to $f \in[-W, W]$ and timelimited to $n \in\{0,1, \ldots, N-1\}$ is the zero signal.

Can we find timelimited signals whose energy is maximally concentrated in the frequency interval $[-W, W]$?

Definition

For any length N signal, $\boldsymbol{x} \in \mathbb{C}^{N}$,

$$
\frac{\int_{-W}^{W}|\tilde{\boldsymbol{x}}(f)|^{2} d f}{\int_{-1 / 2}^{1 / 2}|\tilde{\boldsymbol{x}}(f)|^{2} d f}=\frac{\boldsymbol{x}^{*} \boldsymbol{B}_{N, W} \boldsymbol{x}}{\boldsymbol{x}^{*} \boldsymbol{x}}
$$

where $\boldsymbol{B}_{N, W}$ is an $N \times N$ matrix with entries

$$
\boldsymbol{B}_{N, W}[m, n]= \begin{cases}\frac{\sin (2 \pi W(m-n))}{\pi(m-n)} & \text { if } m \neq n \\ 2 W & \text { if } m=n\end{cases}
$$

The Slepian basis vectors $\boldsymbol{s}_{N, W}^{(0)}, \boldsymbol{s}_{N, W}^{(1)}, \ldots, \boldsymbol{s}_{N, W}^{(N-1)}$ are defined as the eigenvectors of $\boldsymbol{B}_{N, W}$, where the respective eigenvalues $\lambda_{N, W}^{(0)}, \lambda_{N, W}^{(1)}, \ldots, \lambda_{N, W}^{(N-1)}$ are sorted in decreasing order [1].

Slepian Basis Vector Plots

Signal Length: $N=128$, Bandlimit: $W=\frac{1}{8}$

Eigenvalue Behavior

Slightly less than $2 N W$ eigenvalues are close to 1 , and slightly less than $N-2 N W$ eigenvalues are close to 0 . For a fixed $\epsilon>0$, roughly $O(\log N)$ eigenvalues are between ϵ and $1-\epsilon$.

DPSS Eigenvalues: $N=128, W=\frac{1}{8}$

Slepian Transform

$$
\boldsymbol{x}[n]=\cos \left(\frac{2 \pi \cdot 6}{100} n\right), \quad n=0,1, \ldots, 99, W=\frac{1}{10}
$$

Signal

Slepian Basis Coefficients

Slepian Transform

$$
x[n]=\cos \left(\frac{2 \pi \cdot 5.5}{100} n\right), \quad n=0,1, \ldots, 99, W=\frac{1}{10}
$$

Signal

Slepian Basis Coefficients

Goals

- A fast method to compress N dimensional data into $K \approx 2 N W$ dimensional data, and still be able to recover the original data if it lies in the span of the first K Slepian basis vectors.
- A fast method to project a vector in \mathbb{C}^{N} onto the span of the first $K \approx 2 N W$ Slepian basis vectors.
- A fast method to apply the rank $K \approx 2 N W$ pseudoinverse of $\boldsymbol{B}_{N, W}$ to a vector in \mathbb{C}^{N}.

Prolate Matrix vs. Partial Fourier Matrix

Let $\boldsymbol{F}_{N, W}$ be an $N \times 2 N W^{\prime}$ matrix whose columns are the lowest $2 N W^{\prime}$ frequency DFT vectors of length N.

Theorem 1

For any $N \in \mathbb{N}, W \in\left(0, \frac{1}{2}\right)$, and $\epsilon \in\left(0, \frac{1}{2}\right)$, there exist $N \times R_{L}$ matrices $\boldsymbol{L}_{1}, \boldsymbol{L}_{2}$ and an $N \times N$ matrix \boldsymbol{E}_{F} such that

$$
\boldsymbol{B}_{N, W}=\boldsymbol{F}_{N, W} \boldsymbol{F}_{N, W}^{*}+\boldsymbol{L}_{1} \boldsymbol{L}_{2}^{*}+\boldsymbol{E}_{F}
$$

where

$$
R_{L} \leq\left(\frac{4}{\pi^{2}} \log (8 N)+6\right) \log \left(\frac{15}{\epsilon}\right) \text { and }\left\|\boldsymbol{E}_{F}\right\| \leq \epsilon
$$

Due to the length limitations, we have included the proof in Section 2 of "The Fast Slepian Transform". A preprint available at https://arxiv.org/abs/1611.04950.

Number of Eigenvalues in Transition Region

Slepian [1] showed that for a fixed W and ϵ,

$$
\#\left\{\ell: \epsilon \leq \lambda_{N, W}^{(\ell)} \leq 1-\epsilon\right\} \sim \frac{2}{\pi^{2}} \log N \log \left(\frac{1}{\epsilon}-1\right) .
$$

Zhu and Wakin [2] showed that for any N, W, and ϵ,

$$
\#\left\{\ell: \epsilon \leq \lambda_{N, W}^{(\ell)} \leq 1-\epsilon\right\} \leq \frac{\frac{2}{\pi^{2}} \log (N-1)+\frac{2}{\pi^{2}} \frac{2 N-1}{N-1}}{\epsilon(1-\epsilon)}
$$

Using the previous theorem, and the Courant-Fischer-Weyl min-max principle, we can improve this bound.

Theorem 2

For any $N \in \mathbb{N}, W \in\left(0, \frac{1}{2}\right)$, and $\epsilon \in\left(0, \frac{1}{2}\right)$,

$$
\#\left\{\ell: \epsilon<\lambda_{N, W}^{(\ell)}<1-\epsilon\right\} \leq\left(\frac{8}{\pi^{2}} \log (8 N)+12\right) \log \left(\frac{15}{\epsilon}\right)
$$

Fast Projection

Define $\boldsymbol{S}_{[K]}=\left[\begin{array}{llll}\boldsymbol{s}_{N, W}^{(0)} & \boldsymbol{s}_{N, W}^{(1)} & \cdots & \boldsymbol{s}_{N, W}^{(K-1)}\end{array}\right]$.

Theorem 3

For any $N \in \mathbb{N}, W \in\left(0, \frac{1}{2}\right)$, and $\epsilon \in\left(0, \frac{1}{2}\right)$, pick K such that $\lambda_{N, W}^{(K-1)}>\epsilon$ and $\lambda_{N, W}^{(K)}<1-\epsilon$. Then, there exist $N \times R_{U}$ matrices $\boldsymbol{U}_{1}, \boldsymbol{U}_{2}$ and an $N \times N$ matrix \boldsymbol{E}_{S} such that

$$
\boldsymbol{S}_{[K]} \boldsymbol{S}_{[K]}^{*}=\boldsymbol{B}_{N, W}+\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{*}+\boldsymbol{E}_{S}
$$

where

$$
R_{U} \leq\left(\frac{8}{\pi^{2}} \log (8 N)+12\right) \log \left(\frac{15}{\epsilon}\right) \text { and }\left\|\boldsymbol{E}_{S}\right\| \leq \epsilon
$$

Idea: $\boldsymbol{B}_{N, W}$ and $\boldsymbol{S}_{[K]} \boldsymbol{S}_{[K]}^{*}$ have the same eigenvectors, and most of the eigenvalues are almost the same.

Define

$$
\begin{gathered}
\mathcal{I}_{1}=\left\{\ell<K: 1-\epsilon \leq \lambda_{N, W}^{(\ell)} \leq 1\right\}, \\
\mathcal{I}_{2}=\left\{\ell<K: \epsilon<\lambda_{N, W}^{(\ell)}<1-\epsilon\right\}, \\
\mathcal{I}_{3}=\left\{\ell \geq K: \epsilon<\lambda_{N, W}^{(\ell)}<1-\epsilon\right\}, \\
\mathcal{I}_{4}=\left\{\ell \geq K: 0 \leq \lambda_{N, W}^{(\ell)} \leq \epsilon\right\},
\end{gathered}
$$

and accordingly partition

$$
\boldsymbol{S}_{N, W}:=\left[\begin{array}{lll}
\boldsymbol{s}_{N, W}^{(0)} & \cdots & \boldsymbol{s}_{N, W}^{(N-1)}
\end{array}\right]=\left[\begin{array}{llll}
\boldsymbol{S}_{1} & \boldsymbol{S}_{2} & \boldsymbol{S}_{3} & \boldsymbol{S}_{4}
\end{array}\right]
$$

$\boldsymbol{\Lambda}_{N, W}:=\operatorname{diag}\left(\lambda_{N, W}^{(0)}, \ldots, \lambda_{N, W}^{(N-1)}\right)=\operatorname{blockdiag}\left(\boldsymbol{\Lambda}_{1}, \boldsymbol{\Lambda}_{2}, \boldsymbol{\Lambda}_{3}, \boldsymbol{\Lambda}_{4}\right)$.

Fast Projection

So, $\boldsymbol{B}_{N, W}=\boldsymbol{S}_{1} \boldsymbol{\Lambda}_{1} \boldsymbol{S}_{1}^{*}+\boldsymbol{S}_{2} \boldsymbol{\Lambda}_{2} \boldsymbol{S}_{2}^{*}+\boldsymbol{S}_{3} \boldsymbol{\Lambda}_{3} \boldsymbol{S}_{3}^{*}+\boldsymbol{S}_{4} \boldsymbol{\Lambda}_{4} \boldsymbol{S}_{4}^{*}$, and $\boldsymbol{S}_{[K]} \boldsymbol{S}_{[K]}^{*}=\boldsymbol{S}_{1} \boldsymbol{S}_{1}^{*}+\boldsymbol{S}_{2} \boldsymbol{S}_{2}^{*}$.
Then, if we define

$$
\begin{gathered}
\boldsymbol{U}_{1}=\left[\begin{array}{ll}
\boldsymbol{S}_{2}\left(\boldsymbol{I}-\boldsymbol{\Lambda}_{2}\right)^{1 / 2} & \boldsymbol{S}_{3} \boldsymbol{\Lambda}_{3}^{1 / 2}
\end{array}\right] \\
\boldsymbol{U}_{2}=\left[\begin{array}{ll}
\boldsymbol{S}_{2}\left(\boldsymbol{I}-\boldsymbol{\Lambda}_{2}\right)^{1 / 2} & -\boldsymbol{S}_{3} \boldsymbol{\Lambda}_{3}^{1 / 2}
\end{array}\right] \\
\boldsymbol{E}_{S}=\boldsymbol{S}_{1}\left(\boldsymbol{I}-\boldsymbol{\Lambda}_{1}\right) \boldsymbol{S}_{1}^{*}-\boldsymbol{S}_{4} \boldsymbol{\Lambda}_{4} \boldsymbol{S}_{4}^{*}
\end{gathered}
$$

we have

$$
\boldsymbol{S}_{[K]} \boldsymbol{S}_{[K]}^{*}=\underbrace{\boldsymbol{B}_{N, W}}_{\text {Toeplitz }}+\underbrace{\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{*}}_{\text {Low Rank }}+\underbrace{\boldsymbol{E}_{S}}_{\text {Small }} .
$$

So, $\boldsymbol{B}_{N, W}+\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{*}$ is an approximation for $\boldsymbol{S}_{[K]} \boldsymbol{S}_{[K]}^{*}$ which can be applied to a vector in $O\left(N \log N \log \frac{1}{\epsilon}\right)$ operations.

Fast Compression

Theorem 4

For any $N \in \mathbb{N}, W \in\left(0, \frac{1}{2}\right)$, and $\epsilon \in\left(0, \frac{1}{2}\right)$, pick K such that $\lambda_{N, W}^{(K-1)}>\epsilon$ and $\lambda_{N, W}^{(K)}<1-\epsilon$. Then, there exist $N \times K^{\prime}$ matrices $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}$ where

$$
K^{\prime} \leq\lceil 2 N W\rceil+\left(\frac{12}{\pi^{2}} \log (8 N)+18\right) \log \left(\frac{15}{\epsilon}\right)
$$

such that $\left\|\boldsymbol{T}_{1} \boldsymbol{T}_{2}^{*}-\boldsymbol{S}_{[K]} \boldsymbol{S}_{[K]}^{*}\right\| \leq 2 \epsilon$, and \boldsymbol{T}_{1} and \boldsymbol{T}_{2}^{*} can be applied to a vector in $O\left(N \log N \log \frac{1}{\epsilon}\right)$ operations.

Idea: Combine Theorem 1 and Theorem 3 to get

$$
\boldsymbol{S}_{[K]} \boldsymbol{S}_{[K]}^{*}=\boldsymbol{F}_{N, W} \boldsymbol{F}_{N, W}^{*}+\boldsymbol{L}_{1} \boldsymbol{L}_{2}^{*}+\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{*}+\boldsymbol{E}_{F}+\boldsymbol{E}_{S} .
$$

Then, set $\boldsymbol{T}_{1}=\left[\begin{array}{lll}\boldsymbol{F}_{N, W} & \boldsymbol{L}_{1} & \boldsymbol{U}_{1}\end{array}\right]$ and $\boldsymbol{T}_{2}=\left[\begin{array}{lll}\boldsymbol{F}_{N, W} & \boldsymbol{L}_{2} & \boldsymbol{U}_{2}\end{array}\right]$.

Fast Pseudoinverse

Let $\boldsymbol{B}_{N, W}^{\dagger}$ be the rank- K truncated pseudoinverse of $\boldsymbol{B}_{N, W}$.

Theorem 5

For any $N \in \mathbb{N}, W \in\left(0, \frac{1}{2}\right)$, and $\epsilon \in\left(0, \frac{1}{2}\right)$, pick K such that $\lambda_{N, W}^{(K-1)}>\epsilon$ and $\lambda_{N, W}^{(K)}<1-\epsilon$. Then, there exist $N \times R_{V}$ matrices $\boldsymbol{V}_{1}, \boldsymbol{V}_{2}$ and an $N \times N$ matrix \boldsymbol{E}_{B} such that

$$
\boldsymbol{B}_{N, W}^{\dagger}=\boldsymbol{B}_{N, W}+\boldsymbol{V}_{1} \boldsymbol{V}_{2}^{*}+\boldsymbol{E}_{B}
$$

where

$$
R_{V} \leq\left(\frac{8}{\pi^{2}} \log (8 N)+12\right) \log \left(\frac{15}{\epsilon}\right) \text { and }\left\|\boldsymbol{E}_{B}\right\| \leq 3 \epsilon
$$

Idea: $\boldsymbol{B}_{N, W}^{\dagger}$ and $\boldsymbol{B}_{N, W}$ have the same eigenvectors, and most of the eigenvalues are almost the same.

Fast Pseudoinverse

So, $\boldsymbol{B}_{N, W}=\boldsymbol{S}_{1} \boldsymbol{\Lambda}_{1} \boldsymbol{S}_{1}^{*}+\boldsymbol{S}_{2} \boldsymbol{\Lambda}_{2} \boldsymbol{S}_{2}^{*}+\boldsymbol{S}_{3} \boldsymbol{\Lambda}_{3} \boldsymbol{S}_{3}^{*}+\boldsymbol{S}_{4} \boldsymbol{\Lambda}_{4} \boldsymbol{S}_{4}^{*}$, and $\boldsymbol{B}_{N, W}^{\dagger}=\boldsymbol{S}_{1} \boldsymbol{\Lambda}_{1}^{-1} \boldsymbol{S}_{1}^{*}+\boldsymbol{S}_{2} \boldsymbol{\Lambda}_{2}^{-1} \boldsymbol{S}_{2}^{*}$.

Then, if we set

$$
\begin{aligned}
& \boldsymbol{V}_{1}=\left[\begin{array}{ll}
\boldsymbol{S}_{2}\left(\boldsymbol{\Lambda}_{2}^{-1}-\boldsymbol{\Lambda}_{2}\right)^{1 / 2} & \boldsymbol{S}_{3} \boldsymbol{\Lambda}_{3}^{1 / 2}
\end{array}\right] \\
& \boldsymbol{V}_{2}=\left[\begin{array}{ll}
\boldsymbol{S}_{2}\left(\boldsymbol{\Lambda}_{2}^{-1}-\boldsymbol{\Lambda}_{2}\right)^{1 / 2} & -\boldsymbol{S}_{3} \boldsymbol{\Lambda}_{3}^{1 / 2}
\end{array}\right] \\
& \boldsymbol{E}_{B}=\boldsymbol{S}_{1}\left(\boldsymbol{\Lambda}_{1}^{-1}-\boldsymbol{\Lambda}_{1}\right) \boldsymbol{S}_{1}^{*}-\boldsymbol{S}_{4} \boldsymbol{\Lambda}_{4} \boldsymbol{S}_{4}^{*}
\end{aligned}
$$

we have

$$
\boldsymbol{B}_{N, W}^{\dagger}=\underbrace{\boldsymbol{B}_{N, W}}_{\text {Toeplitz }}+\underbrace{\boldsymbol{V}_{1} \boldsymbol{V}_{2}^{*}}_{\text {Low Rank }}+\underbrace{\boldsymbol{E}_{B}}_{\text {Small }}
$$

So, $\boldsymbol{B}_{N, W}+\boldsymbol{V}_{1} \boldsymbol{V}_{2}^{*}$ is an approximation for $\boldsymbol{B}_{N, W}^{\dagger}$ which can be applied to a vector in $O\left(N \log N \log \frac{1}{\epsilon}\right)$ operations.

Simulations

Slepian Projection: Average Time ($W=\frac{1}{4}$)

Simulations

Slepian Projection: Average Time $\left(W=\frac{1}{16}\right)$

Conclusions

- The Slepian basis is a good choice of basis for working with samples of a bandlimited signal.
- We now have fast (approximate) algorithms for working with the Slepian basis, whose complexity scales comparably to the FFT.

References

D. Slepian. Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty- V: The Discrete Case. Bell Syst. Tech. J., 57(5):1371-1430, 1978.

R Z. Zhu and M. Wakin. Approximating Sampled Sinusoids and Multiband Signals Using Multiband Modulated DPSS Dictionaries. Preprint, 2015. Available: http://arxiv.org/abs/1507.00029v2

围 S. Karnik, Z. Zhu, M. Wakin, J. Romberg, M. Davenport. The Fast Slepian Transform. Preprint, 2016. Available: https://arxiv.org/abs/1611.04950

Acknowledgements

This work was supported by NSF grants CCF-1409261 and CCF-1409406

