

Persistent-Homology-based Detection of Power System Low-frequency Oscillations using PMUs

Yang Chen, Harish Chintakunta, Le Xie, Yuliy M. Baryshnikov, and P. R. Kumar,

GlobalSip 2016

globalsip2016

Problem statement	Methodology	Cyclicity response	Results
		00	
		00	

Problem statement

Goal:

 Detect low frequency oscillations in power grids with minimal delay.

Why?

Low frequency oscillations can lead to system wide failures, such as the 1996 Western Electricity Coordinating Council (WECC) blackout induced by a 0.25 Hz oscillation.

Our approach:

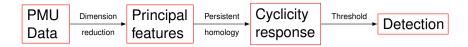
- We use a data-centric approach in contrast to model based approach.
- We utilize synchrophasor data collected from GPS synchronized PMUs.

Problem statement	Methodology	Cyclicity response	Results
		00	

< 口 > < 🗗

★ E > < E</p>

Problem statement	Methodology	Cyclicity response	Results
		00	
		00	



PMU Data:

< 口 > < 🗗

★ E > < E</p>

Problem statement	Methodology	Cyclicity response	Results
		00	

Principal features:

1 Obtained using Principal Component Analysis (PCA),

$$\mathbf{2} \ \mathbf{PC_i} = (\mathbf{Y_e} - \mu) \, \mathbf{u_i}$$

3 PC_i is the *i*th PC, **u**_i's, i = 1, ..., N, the eigenvectors of $\Sigma_{\mathbf{Y}_{\mathbf{e}}}$. $\mu = E[\mathbf{Y}_{\mathbf{e}}]$ is the measurement expectation.

イロン イヨン イヨン イヨン

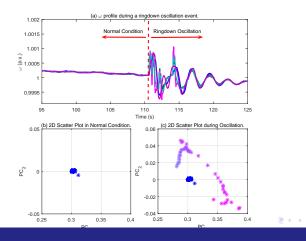
Problem statement	Methodology	Cyclicity response	Results
		00	

Cyclcity response:

- Convert time signals into a point cloud
- 2 Analyze the point cloud to infer cyclic behavior in the system

Problem statement	Methodology	Cyclicity response ●○ ○○	Results
Delay embedding			
Cyclicity responses			

- **1** Dynamical system $f : X \rightarrow X$ with an attractor A,
- **2** Any *generic* observation function $g: X \to \mathbb{R}^k$,
- 3 The map

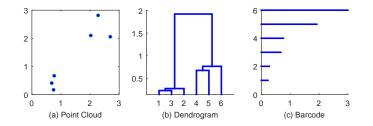

$$G(x) = \left(g(x), g(\phi(x)), g(\phi^2(x)), \dots, g(\phi^{k-1}(x))\right)$$

is an embedding of A, for sufficient large k.

In essence: Embedding any generic observation function in a sufficiently high dimension can reveal the topology of the underlying attractor. Delay embedding

Cyclicity response

Delay embedding theorem



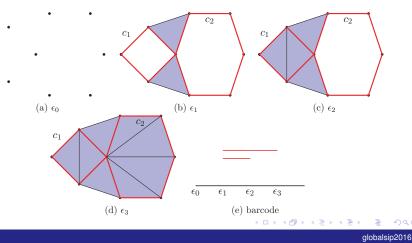
Y.Chen et. al.

Problem statement	Methodology	Cyclicity response ○○ ●○	Results
Hierarchical clustering			

Cyclicity response

Hierarchical clustering

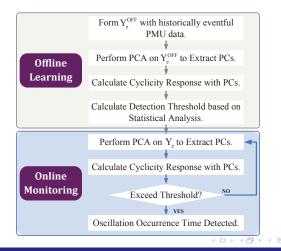
globalsip2016


<ロ> < 四 > < 四 > < 回 > < 回 > < 回

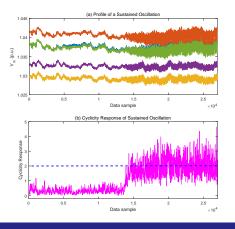
Problem statement	Methodology	Cyclicity response	Results
		0	
		•0	

Persistence homology

Cyclicity response


Persistence homology

Problem statement	Methodology	Cyclicity response °° °●	Results
Development have been also we			

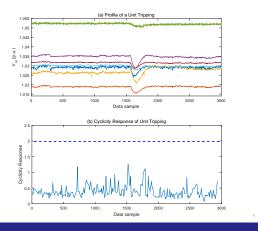

Persistence homology

Implementation

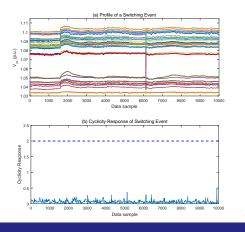
Cyclicity response of oscillatory events

Sustained oscillations

Y.Chen et. al.


Cyclicity response of oscillatory events

Ringdown oscillations


globalsip2016

Cyclicity response of non-oscillatory events

Y.Chen et. al.

Cyclicity response of non-oscillatory events Switching event

Y.Chen et. al.

Prol	blem	i stat	teme	ent

Thank you!!

▲□▶▲□▶▲□▶▲□▶ □ のへで

Y.Chen et. al.