Linear Systems On Graphs

Oguzhan Teke P. P. Vaidyanathan

Department of Electrical Engineering California Institute of Technology

4th Global Conference on Signal and Information Processing

Caltech

- 1 Graph Signal Processing
- 2 Linear Systems in the Classical Domain
- 3 Linear Systems on Graphs
 - Definitions
 - Operator with repeated eigenvalues
 - Operators with distinct eigenvalues
 - Graph Laplacian v.s. Adjacency Matrix

4 Conclusions

- Graph Signal Processing
- 2 Linear Systems in the Classical Domain
- 3 Linear Systems on Graphs
 - Definitions
 - Operator with repeated eigenvalues
 - Operators with distinct eigenvalues
 - Graph Laplacian v.s. Adjacency Matrix

4 Conclusions

- 1 Graph Signal Processing
- 2 Linear Systems in the Classical Domain
- 3 Linear Systems on Graphs
 - Definitions
 - Operator with repeated eigenvalues
 - Operators with distinct eigenvalues
 - Graph Laplacian v.s. Adjacency Matrix

4 Conclusions

- 1 Graph Signal Processing
- 2 Linear Systems in the Classical Domain
- 3 Linear Systems on Graphs
 - Definitions
 - Operator with repeated eigenvalues
 - Operators with distinct eigenvalues
 - Graph Laplacian v.s. Adjacency Matrix

4 Conclusions

- Graph Signal Processing
- 2 Linear Systems in the Classical Domain
- 3 Linear Systems on Graphs
 - Definitions
 - Operator with repeated eigenvalues
 - Operators with distinct eigenvalues
 - Graph Laplacian v.s. Adjacency Matrix

4 Conclusions

- 1 Graph Signal Processing
- 2 Linear Systems in the Classical Domain
- 3 Linear Systems on Graphs
 - Definitions
 - Operator with repeated eigenvalues
 - Operators with distinct eigenvalues
 - Graph Laplacian v.s. Adjacency Matrix

4 Conclusions

- 1 Graph Signal Processing
- 2 Linear Systems in the Classical Domain
- 3 Linear Systems on Graphs
 - Definitions
 - Operator with repeated eigenvalues
 - Operators with distinct eigenvalues
 - Graph Laplacian v.s. Adjacency Matrix

4 Conclusions

- 1 Graph Signal Processing
- 2 Linear Systems in the Classical Domain
- 3 Linear Systems on Graphs
 - Definitions
 - Operator with repeated eigenvalues
 - Operators with distinct eigenvalues
 - Graph Laplacian v.s. Adjacency Matrix

4 Conclusions

- 1 Graph Signal Processing
- 2 Linear Systems in the Classical Domain
- 3 Linear Systems on Graphs
 - Definitions
 - Operator with repeated eigenvalues
 - Operators with distinct eigenvalues
 - Graph Laplacian v.s. Adjacency Matrix

4 Conclusions

$$m{x} = \left[egin{array}{c} x_1 \ dots \ x_i \ dots \ x_N \end{array}
ight] \in \mathcal{C}^N$$

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ dots \ x_i \ dots \ x_N \end{array}
ight] \in \mathcal{C}^N$$

S is the graph operator

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ dots \ x_i \ dots \ x_N \end{array}
ight] \in \mathcal{C}^N$$

4/15

Other selections³

Sandryhaila & Moura, "Discrete Signal Processing on Graphs," IEEE Trans. S. P. vol. 61, no. 7, 2013

² Shuman et al, "The emerging field of signal processing on graphs: ...," IEEE S. P. Magazine, vol. 30, no. 3 2013

³ Gavili & Zhang, "On the shift operator and optimal filtering in graph signal processing," arXiv:1511.03512v3, 2016

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ dots \ x_i \ dots \ x_N \end{array}
ight] \in \mathcal{C}^N$$

4/15

S is the graph operator A Adjacency matrix A A Graph Laplacians A : A A AOther selections³

$$S = V \Lambda V^{-1}$$

Sandryhaila & Moura, "Discrete Signal Processing on Graphs," IEEE Trans. S. P. vol. 61, no. 7, 2013

² Shuman et al, "The emerging field of signal processing on graphs: ...," IEEE S. P. Magazine, vol. 30, no. 3 2013

³ Gavili & Zhang, "On the shift operator and optimal filtering in graph signal processing," arXiv:1511.03512v3, 2016

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ dots \ x_i \ dots \ x_N \end{array}
ight] \in \mathcal{C}^N$$

S is the graph operator

Adjacency matrix¹ : A Graph Laplacians² : L, or \mathcal{L} Other selections³

$$oldsymbol{S} = oldsymbol{V}oldsymbol{\Lambda}oldsymbol{V}^{ ext{-}1}$$

Graph Fourier Basis : VGraph Fourier Transform : $F = V^{-1}$

Sandryhaila & Moura, "Discrete Signal Processing on Graphs," IEEE Trans. S. P. vol. 61, no. 7, 2013

² Shuman et al, "The emerging field of signal processing on graphs: ...," IEEE S. P. Magazine, vol. 30, no. 3 2013

³ Gavili & Zhang, "On the shift operator and optimal filtering in graph signal processing," arXiv:1511.03512v3, 2016

- Graph Signal Processing
- 2 Linear Systems in the Classical Domain
- 3 Linear Systems on Graphs
 - Definitions
 - Operator with repeated eigenvalues
 - Operators with distinct eigenvalues
 - Graph Laplacian v.s. Adjacency Matrix

4 Conclusions

An arbitrary linear system

$$y[n] = \sum_{k} h[n, k] x[k]$$

Teke & Vaidyanathan GlobalSIP 2016

An *arbitrary* linear system

$$y[n] = \sum_k \ h[n,k] \ x[k]$$

$$\downarrow \qquad \downarrow$$
 Output System Input

Teke & Vaidyanathan GlobalSIP 2016

An arbitrary linear system

$$y[n] = \sum_k \ h[n,k] \ x[k]$$

$$\downarrow \qquad \downarrow$$
 Output System Input

A linear time-invariant system

$$y[n] = \sum_{k} h[n-k] x[k]$$

An arbitrary linear system

$$y[n] = \sum_k \begin{subarray}{c} h[n,k] & x[k] \\ \downarrow & \downarrow & \downarrow \\ \text{Output} & \text{System Input} \end{subarray}$$

A linear *time-invariant* system

$$y[n] = \sum_{k} h[n-k] x[k]$$

$$\updownarrow$$

$$H(z) = \sum_{k} h[k] z^{-k}$$

An arbitrary linear system

$$y[n] = \sum_k \ h[n,k] \ x[k]$$

$$\downarrow \qquad \downarrow$$
 Output System Input

$$y[n] = \sum_{k} h[n-k] x[k]$$

$$\updownarrow$$

$$H(z) = \sum_{k} h[k] z^{-k}$$

An arbitrary linear system

$$y[n] = \sum_k \begin{subarray}{c} \begin{subarr$$

$$y[n] = \sum_{k} h[n-k] x[k]$$

$$\updownarrow$$

$$Polynomial \Longleftarrow$$

$$H(z) = \sum_{k} h[k] z^{-k}$$

$$X(z) \to Y(z) \iff z^{\text{-}k} X(z) \to z^{\text{-}k} Y(z)$$

An arbitrary linear system

$$y[n] = \sum_k \begin{subarray}{c} \begin{subarr$$

$$y[n] = \sum_{k} h[n-k] x[k]$$

$$\updownarrow$$

Polynomial
$$\longleftarrow$$

$$H(z) = \sum_k h[k] \, z^{-k}$$

Shift-Invariant
$$\longleftarrow X(z) \to Y(z) \iff z^{-k}X(z) \to z^{-k}Y(z)$$

An arbitrary linear system

$$y[n] = \sum_k \begin{subarray}{c} \begin{subarr$$

$$y[n] = \sum_{k} \frac{h[n-k]}{x[k]} x[k]$$

$$\updownarrow$$

Polynomial
$$\longleftarrow$$

$$H(z) = \sum_k h[k] \, z^{-k}$$

Shift-Invariant
$$\longleftarrow X(z) \to Y(z) \iff z^{-k}X(z) \to z^{-k}Y(z)$$

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

An arbitrary linear system

$$y[n] = \sum_{k} h[n, k] \ x[k]$$

$$\downarrow \qquad \downarrow$$
 Output System Input

A linear time-invariant system

$$y[n] = \sum_{k} h[n-k] x[k]$$

$$\updownarrow$$

$$Polynomial \longleftarrow$$

$$H(z) = \sum_k h[k] \, z^{\text{-}k}$$

Shift-Invariant
$$\longleftarrow X(z) \to Y(z) \iff z^{-k}X(z) \to z^{-k}Y(z)$$

$$Y(e^{j\omega})=H(e^{j\omega})X(e^{j\omega})$$

 $Y(e^{j\omega_i})$ does NOT depend on $X(e^{j\omega_k})$ for $\omega_i \neq \omega_i$

An arbitrary linear system

$$y[n] = \sum_{k} h[n, k] \ x[k]$$

$$\downarrow \qquad \downarrow$$
 Output System Input

$$y[n] = \sum_{k} h[n-k] x[k]$$

$$\updownarrow$$

$$Polynomial \longleftarrow$$

$$H(z) = \sum_k h[k] \, z^{\text{-}k}$$

Shift-Invariant
$$\longleftarrow X(z) \to Y(z) \iff z^{-k}X(z) \to z^{-k}Y(z)$$

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

Alias-Free
$$\longleftarrow$$
 $Y(e^{j\,\omega_i})$ does NOT depend on $X(e^{j\,\omega_k})$ for $\omega_i \neq \omega_j$

- Graph Signal Processing
- 2 Linear Systems in the Classical Domain
- 3 Linear Systems on Graphs
 - Definitions
 - Operator with repeated eigenvalues
 - Operators with distinct eigenvalues
 - Graph Laplacian v.s. Adjacency Matrix

4 Conclusions

Linear Filters: Polynomial

A linear system $oldsymbol{H}$ on a graph with operator $oldsymbol{S} = oldsymbol{V} oldsymbol{\Lambda} oldsymbol{V}^{-1}$

$$H = V \widehat{H} V^{-1} \implies \widehat{H} = V^{-1}HV$$

Teke & Vaidyanathan

Linear Filters: Polynomial

A linear system $m{H}$ on a graph with operator $m{S} = m{V} m{\Lambda} m{V}^{-1}$

$$H = V \widehat{H} V^{-1} \implies \widehat{H} = V^{-1}HV$$

Definition (Polynomial filters^{4,5})

$$m{H}$$
 is polynomial $\iff m{H} = H(m{S}) = \sum_{k=0}^{N-1} h_k \, m{S}^k.$

⁴ Shuman et al, "The emerging field of signal processing on graphs: ...," IEEE S. P. Magazine, vol. 30, no. 3 2013

⁵ Sandryhaila & Moura, "Discrete Signal Processing on Graphs," *IEEE Trans. S. P. vol. 61, no. 7, 2013*

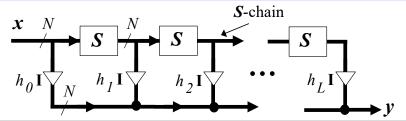
Linear Filters: Polynomial

A linear system H on a graph with operator $S = V \Lambda V^{-1}$

$$H = V \widehat{H} V^{-1} \implies \widehat{H} = V^{-1}HV$$

Definition (Polynomial filters^{4,5})

$$\boldsymbol{H}$$
 is polynomial $\iff \boldsymbol{H} = H(\boldsymbol{S}) = \sum_{k=0}^{N-1} h_k \, \boldsymbol{S}^k.$



⁴ Shuman et al, "The emerging field of signal processing on graphs: ...," IEEE S. P. Magazine, vol. 30, no. 3 2013

⁵ Sandryhaila & Moura, "Discrete Signal Processing on Graphs," *IEEE Trans. S. P. vol. 61, no. 7, 2013*

Teke & Vaidyanathan GlobalSIP 2016 9 / 15

Given the graph operator S with $S = V \Lambda V^{-1}$ and a linear filter H

Teke & Vaidyanathan GlobalSIP 2016

Given the graph operator S with $S = V \Lambda V^{-1}$ and a linear filter H

$$y = H x \iff \hat{y} = \widehat{H} \hat{x}$$

Given the graph operator S with $S = V \Lambda V^{-1}$ and a linear filter H

$$y = H x \iff \hat{y} = \widehat{H} \hat{x}$$

 \hat{y}_i should depend on only \hat{x}_i , not \hat{x}_j for $i \neq j$

Teke & Vaidyanathan

Given the graph operator S with $S = V \Lambda V^{-1}$ and a linear filter H

$$y = H x \iff \hat{y} = \widehat{H} \hat{x}$$

 \widehat{y}_i should depend on only \widehat{x}_i , not \widehat{x}_j for $i \neq j$

 $\hat{y}_i \stackrel{?}{=} \hat{h}_i \hat{x}_i \iff \widehat{H}$ is a diagonal matrix.

Given the graph operator S with $S = V\Lambda V^{-1}$ and a linear filter H

$$y = H x \iff \hat{y} = \widehat{H} \hat{x}$$

 \widehat{y}_i should depend on only \widehat{x}_i , not \widehat{x}_j for $i \neq j$

 $\hat{y}_i \stackrel{?}{=} \hat{h}_i \hat{x}_i \iff \widehat{H}$ is a diagonal matrix.

Definition (Alias-free filters)

H is alias-free $\iff \widehat{H} = V^{-1}HV$ is diagonal.

Linear Filters: Alias-Free & Shift-Invariant

Given the graph operator S with $S = V\Lambda V^{-1}$ and a linear filter H

$$y = H x \iff \hat{y} = \widehat{H} \hat{x}$$

 \hat{y}_i should depend on only \hat{x}_i , not \hat{x}_j for $i \neq j$

 $\hat{y}_i \stackrel{?}{=} \hat{h}_i \hat{x}_i \iff \widehat{H}$ is a diagonal matrix.

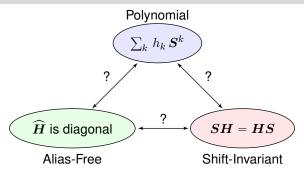
Definition (Alias-free filters)

H is alias-free $\iff \widehat{H} = V^{-1}HV$ is diagonal.

Definition (Shift-invariant filters⁵)

H is shift-invariant $\iff SH = HS$.

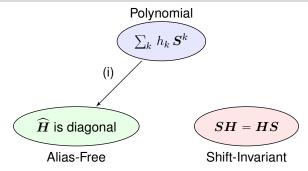
⁵ Sandryhaila & Moura, "Discrete Signal Processing on Graphs," *IEEE Trans. S. P. vol. 61, no. 7, 2013*



$$SH = HS$$

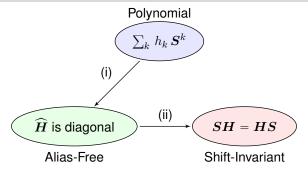
Shift-Invariant

Theorem



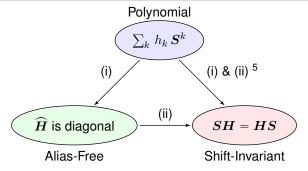
Theorem

When S is diagonalizable (i). If H is polynomial, H is alias-free.



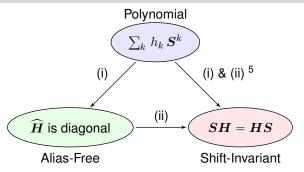
Theorem

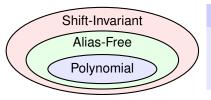
- (i). If H is polynomial, H is alias-free.
- (ii). If H is alias-free, H is shift-invariant.



Theorem

- (i). If H is polynomial, H is alias-free.
- (ii). If H is alias-free, H is shift-invariant.



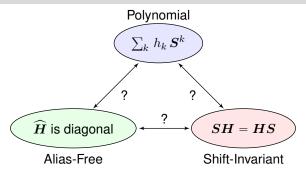


Theorem

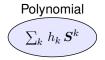
- (i). If H is polynomial, H is alias-free.
- (ii). If H is alias-free, H is shift-invariant.

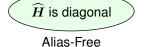
Sandryhaila & Moura, "Discrete Signal Processing on Graphs," IEEE Trans. S. P. vol. 61, no. 7, 2013

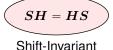
Interconnections when S has distinct eigenvalues



Interconnections when S has distinct eigenvalues





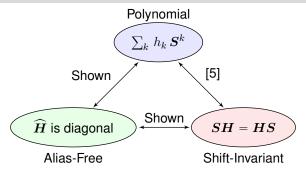


Theorem

When S has distinct eigenvalues, the following are equivalent

Teke & Vaidyanathan

Interconnections when S has distinct eigenvalues



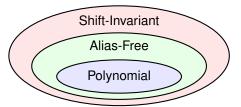
Theorem

When S has distinct eigenvalues, the following are equivalent

- (i). H is polynomial.
- (ii). H is alias-free.
- (iii). H is shift-invariant.

⁵ Sandryhaila & Moura, "Discrete Signal Processing on Graphs," IEEE Trans. S. P. vol. 61, no. 7, 2013

Case of repeated eigenvalues



Case of repeated eigenvalues

Shift-Invariant
Alias-Free
Polynomial

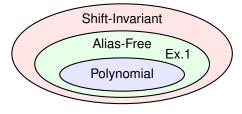
Case of distinct eigenvalues

Shift-Invariant

Alias-Free

Polynomial

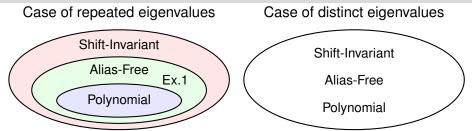
Case of repeated eigenvalues



Case of distinct eigenvalues

Shift-Invariant
Alias-Free
Polynomial

Ex.1:



Ex.1: λ is a repeated eigenvalue of S

Case of repeated eigenvalues

Shift-Invariant

Alias-Free

Ex.1

Polynomial

Case of distinct eigenvalues

Shift-Invariant
Alias-Free
Polynomial

Ex.1: λ is a repeated eigenvalue of S

H is alias-free \implies $H = V\widehat{H}V^{-1}$, \widehat{H} is diagonal

Case of repeated eigenvalues

Shift-Invariant

Alias-Free Ex.1

Polynomial

Case of distinct eigenvalues

Shift-Invariant
Alias-Free
Polynomial

Ex.1: λ is a repeated eigenvalue of S

H is alias-free $\implies H = V \widehat{H} V^{-1}$, \widehat{H} is diagonal Diagonals of \widehat{H} are distinct $\implies \widehat{h}_i \neq \widehat{h}_j$ for $i \neq j$

Teke & Vaidyanathan

Case of repeated eigenvalues

Shift-Invariant

Alias-Free Ex.1

Polynomial

Case of distinct eigenvalues

Shift-Invariant

Alias-Free

Polynomial ___

Ex.1: λ is a repeated eigenvalue of S

H is alias-free \implies $H = V \widehat{H} V^{-1}, \qquad \widehat{H}$ is diagonal

Diagonals of $\widehat{\boldsymbol{H}}$ are distinct \implies $\widehat{h}_i \neq \widehat{h}_j$ for $i \neq j$

Find $H(\cdot)$ s.t. $H(\lambda) = \hat{h}_i$ and $H(\lambda) = \hat{h}_i$

Case of repeated eigenvalues

Shift-Invariant
Alias-Free
Ex.1
Polynomial

Case of distinct eigenvalues

Shift-Invariant
Alias-Free
Polynomial

Ex.1: λ is a repeated eigenvalue of S

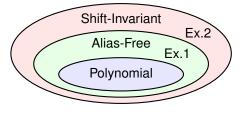
H is alias-free \Longrightarrow $H = V\widehat{H}V^{-1},$ \widehat{H} is diagonal

Diagonals of \widehat{H} are distinct \implies $\widehat{h}_i \neq \widehat{h}_j$ for $i \neq j$

Find $H(\cdot)$ s.t. $H(\lambda) = \hat{h}_i$ and $H(\lambda) = \hat{h}_j$

H is alias-free, but not polynomial

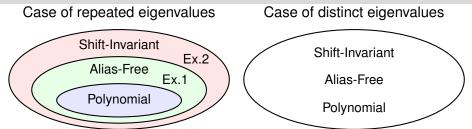
Case of repeated eigenvalues



Case of distinct eigenvalues

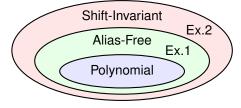
Shift-Invariant
Alias-Free
Polynomial

Ex.2:



Ex.2: λ is a repeated eigenvalue of S

Case of repeated eigenvalues

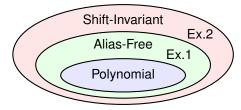


Case of distinct eigenvalues

Ex.2: λ is a repeated eigenvalue of S

$$\boldsymbol{\Lambda} \! = \! \begin{bmatrix} \lambda \, \boldsymbol{I}_m & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Lambda}' \end{bmatrix} \!,$$

Case of repeated eigenvalues



Case of distinct eigenvalues

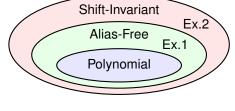
Shift-Invariant
Alias-Free
Polynomial

Ex.2: λ is a repeated eigenvalue of S

$$\boldsymbol{\Lambda} \! = \! \begin{bmatrix} \lambda \, \boldsymbol{I}_m & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Lambda}' \end{bmatrix} \!, \quad \boldsymbol{\widehat{H}} \! = \! \begin{bmatrix} \boldsymbol{\widehat{H}}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\widehat{H}}_2 \end{bmatrix}$$

Case of repeated eigenvalues

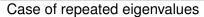
Case of distinct eigenvalues



Shift-Invariant
Alias-Free
Polynomial

Ex.2: λ is a repeated eigenvalue of S

Teke & Vaidyanathan



Case of distinct eigenvalues

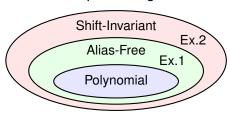
Shift-Invariant
Alias-Free
Polynomial

Ex.2: λ is a repeated eigenvalue of S

$$\Lambda = egin{bmatrix} \lambda \, I_m & 0 \ 0 & \Lambda' \end{bmatrix}, \quad \widehat{H} = egin{bmatrix} \widehat{H}_1 & 0 \ 0 & \widehat{H}_2 \end{bmatrix} \longrightarrow ext{Non-diagonalizable Square} \ \Lambda \widehat{H} = \widehat{H} \Lambda & o & SH = HS \end{bmatrix}$$

Case of repeated eigenvalues

Case of distinct eigenvalues



Shift-Invariant
Alias-Free
Polynomial

Ex.2: λ is a repeated eigenvalue of S

$$\Lambda = egin{bmatrix} \lambda \, I_m & 0 \ 0 & \Lambda' \end{bmatrix}, \quad \widehat{H} = egin{bmatrix} \widehat{H}_1 & 0 \ 0 & \widehat{H}_2 \end{bmatrix} \longrightarrow ext{Non-diagonalizable Square} \ \Lambda \widehat{H} = \widehat{H} \Lambda & o & SH = HS \end{bmatrix}$$

H is shift-invariant, but not alias-free

Let
$$\boldsymbol{H} = H(\boldsymbol{L})$$
,

is
$$\boldsymbol{H} = G(\boldsymbol{A})$$

for some other $G(\cdot)$?

Teke & Vaidyanathan

Let
$$\boldsymbol{H} = H(\boldsymbol{L})$$
,

is
$$\boldsymbol{H} = G(\boldsymbol{A})$$

for some other $G(\cdot)$?

No! (In general)

Let
$$\boldsymbol{H} = H(\boldsymbol{L})$$
,

is
$$\boldsymbol{H} = G(\boldsymbol{A})$$

for some other $G(\cdot)$?

No! (In general)

Theorem (Equivalence for polynomials)

Teke & Vaidyanathan

Let
$$\boldsymbol{H} = H(\boldsymbol{L})$$
,

is
$$\boldsymbol{H} = G(\boldsymbol{A})$$

for some other $G(\cdot)$?

No! (In general)

Theorem (Equivalence for polynomials)

Let
$$\boldsymbol{H} = H(\boldsymbol{L})$$
,

is
$$\boldsymbol{H} = G(\boldsymbol{A})$$

for some other $G(\cdot)$?

No! (In general)

Theorem (Equivalence for polynomials)

$$H(\boldsymbol{L}) = \sum_{k} h_{k} \, \boldsymbol{L}^{k} \implies G(\boldsymbol{A}) = \sum_{k} g_{k} \, \boldsymbol{A}^{k}$$

$$H(\mathbf{L}) = G(\mathbf{A})$$

Let
$$\boldsymbol{H} = H(\boldsymbol{L})$$
,

is $\boldsymbol{H} = G(\boldsymbol{A})$

for some other $G(\cdot)$?

No! (In general)

Theorem (Equivalence for polynomials)

$$H(\mathbf{L}) = \sum_{k} h_k \, \mathbf{L}^k \implies G(\mathbf{A}) = \sum_{k} g_k \, \mathbf{A}^k \qquad \text{s.t.} \qquad H(\mathbf{L}) = G(\mathbf{A})$$

$$oldsymbol{g} = oldsymbol{Th}, \qquad \qquad T_{i,j} = egin{cases} 0 & j < i \ (-1)^{i ext{-}1} inom{j^{-1}}{i ext{-}1} d^{j ext{-}i} & j \geqslant i \end{cases}$$

Let
$$\boldsymbol{H} = H(\boldsymbol{L})$$
,

is $\boldsymbol{H} = G(\boldsymbol{A})$

for some other $G(\cdot)$?

No! (In general)

Theorem (Equivalence for polynomials)

$$H(\mathbf{L}) = \sum_{k} h_k \, \mathbf{L}^k \iff G(\mathbf{A}) = \sum_{k} g_k \, \mathbf{A}^k$$
 s.t. $H(\mathbf{L}) = G(\mathbf{A})$

$$oldsymbol{g} = oldsymbol{Th}, \qquad \qquad T_{i,j} = egin{cases} 0 & j < i \ (-1)^{i\text{-}1} inom{j \cdot i}{i \cdot 1} \ d^{j\text{-}i} & j \geqslant i \end{cases}, \qquad \qquad oldsymbol{T}^{\text{-}1} = oldsymbol{T}.$$

Outline

- Graph Signal Processing
- 2 Linear Systems in the Classical Domain
- 3 Linear Systems on Graphs
 - Definitions
 - Operator with repeated eigenvalues
 - Operators with distinct eigenvalues
 - Graph Laplacian v.s. Adjacency Matrix
- 4 Conclusions

14 / 15

- In the classical linear systems

- In the classical linear systems
- What are the interconnections on graphs? (S is diagonalizable)

- In the classical linear systems
 - Polynomial ← Alias-Free ← Shift-Invariant
- What are the interconnections on graphs? (S is diagonalizable)
 - Repeated eigenvalues
 - Polynomial → Alias-Free → Shift-Invariant

- In the classical linear systems
 - Polynomial ← Alias-Free ← Shift-Invariant
- What are the interconnections on graphs? (S is diagonalizable)
 - Repeated eigenvalues
 - Polynomial → Alias-Free → Shift-Invariant
 - Distinct eigenvalues
 - Polynomial ← Alias-Free ← Shift-Invariant

- In the classical linear systems
 - Polynomial ← Alias-Free ← Shift-Invariant
- What are the interconnections on graphs? (S is diagonalizable)
 - · Repeated eigenvalues
 - Polynomial → Alias-Free → Shift-Invariant
 - Distinct eigenvalues
 - Polynomial ← Alias-Free ← Shift-Invariant
- Is H(L) = G(A)?

- In the classical linear systems
 - Polynomial ← Alias-Free ← Shift-Invariant
- What are the interconnections on graphs? (S is diagonalizable)
 - Repeated eigenvalues
 - Polynomial → Alias-Free → Shift-Invariant
 - Distinct eigenvalues
 - Polynomial ← Alias-Free ← Shift-Invariant
- Is H(L) = G(A)?

• No, in general!

Teke & Vaidyanathan

- In the classical linear systems
 - Polynomial ← Alias-Free ← Shift-Invariant
- What are the interconnections on graphs? (S is diagonalizable)
 - · Repeated eigenvalues
 - Polynomial → Alias-Free → Shift-Invariant
 - Distinct eigenvalues
 - Polynomial ← Alias-Free ← Shift-Invariant
- Is H(L) = G(A)?

- No, in general!
- · Yes, when regular.

Teke & Vaidyanathan

- In the classical linear systems
 - Polynomial ←⇒ Alias-Free ←⇒ Shift-Invariant
- What are the interconnections on graphs? (S is diagonalizable)
 - · Repeated eigenvalues
 - Polynomial → Alias-Free → Shift-Invariant
 - Distinct eigenvalues
 - Polynomial ← Alias-Free ← Shift-Invariant
- Is H(L) = G(A)?

- No, in general!
- · Yes, when regular.
- Further problems with repeated eigenvalues

Teke & Vaidvanathan

- In the classical linear systems
 - Polynomial ← Alias-Free ← Shift-Invariant
- What are the interconnections on graphs? (S is diagonalizable)
 - Repeated eigenvalues
 - Polynomial → Alias-Free → Shift-Invariant
 - Distinct eigenvalues
 - Polynomial ← Alias-Free ← Shift-Invariant
- Is H(L) = G(A)?

- No, in general!
- · Yes, when regular.
- Further problems with repeated eigenvalues
 - Eigenspaces!

How to select V? ⁶

Teke & Vaidyanathan, "Uncertainty Principles and Sparse Eigenvectors of Graphs," IEEE Trans. S. P., under review