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Overview

e Overview of standard convolution neural networks
* Explanation of complex-value deep learning problem
e Description of proposed implementation

* Performance comparison on 6-class data set



Convolutional Neural Network

A convolutional neural network (or CNN) is a type of artificial
neural network where the individual neurons are tiled in such a way
that they respond to overlapping regions in the visual field

Different types of layers
— Input layer
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* Each connection contains a weighted filter

* Each incoming neuron is connected to every
outgoing neuron
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* Qutgoing neurons contain activation functions —
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* |Inputs are downscaled by a pooling factor
* Each incoming neuron is connected to one
outgoing neuron
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Backpropagation Algorithm Visualization
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Gradient Descent

 The Gradient Descent algorithm aims to minimize loss, where
loss is a function of the network’s learned weights & current
inputs

* The learning rate represents the step size taken in the direction of
the gradient (downward)

Visualization of Gradient Decent with 2 weights
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Complex-Value Deep Learning

* Motivation: A significant amount of information is
discarded when using only magnitude of complex imagery

* Problem: Modern activation functions do not work with
complex numbers
— Activation functions need to be nonlinear
— Activation functions need to be differentiable
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Activation Function Problem

* Proposed solutions have negative consequences

— Splitting real & imaginary parts & processing each as a real
number quickly distorts the phase

— A phase-only activation function discards a significant amount of
useful magnitude information

— A straight-forward generalization doesn’t converge in training
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Proposed Implementation

* Proposed implementation is fully-complex at input & first
convolution layer

* Let a; & b; be filters for real & imaginary parts respectively
of input x for ith node

* Let A; & B; be the respective outputs for a; & b;
A;=a; * R(x) & B;=b; *I(x)
* fis the activation function, which can be thought of as
taking the absolute value of the complex convolution

f(A4;, B;) = \/Af + B




Training Derivatives

e Activation functions must be nonlinear & differentiable,
making use of complex numbers difficult

* The filters a; & b; can be trained with the following partial
derivatives from the proposed activation function

0f(Ai,Bi) _ A 0f(Ai,Bj) _  Bj
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e After training, activations from complex-input CNN’s look
distinctly different from that of magnitude-only CNN’s
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Magnitude-detected input (L), Magnitude-only CNN
activations (M), Complex-input CNN activations (R)



Normalization

Normalization typically involves normalizing input images such that
the range between max & min pixels is 1 while mean is O

p(i,)) = 7 30,0 ))

max p(i, j)
L]

pn(irj) —

Subtracting the mean distorts the phase, so we normalize by
magnitude only

p(i,Jj)
max lp (@, j)I

pn(irj) —



GOTCHA

The GOTCHA publicly released data set was collected in 2008 by the Air Force Research
Laboratory (AFRL)

The data set consists of SAR phase history data collected at X-band with a 640 MHz
bandwidth with full azimuth coverage at 8 different elevation angles with full polarization

The imaging scene consists of numerous civilian vehicles and calibration targets
The data set is distributed with a basic backprojection function for synthesizing images




Importance of Phase Structure

e GOTCHA was chosen over competing SAR data sets like
MSTAR because there is visible structure to the phase

 Complex-input result on MSTAR was overfit compared to
magnitude-only
— Complex-input accuracy: ~98% testing, 100% training
— Magnitude-only accuracy: “99% testing, 100% training
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Complex-input CNN Structure

Image size 80

Complexfilter size 9 _
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Results
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Prediction Entropy

* Prediction entropy is a useful metric for determining how certain a
classifier is with its prediction

* High prediction entropy can signify to the user which predictions
have a high probability of being incorrect

* For probability distribution p(x), entropy can be quantized as

E(p(x)) = — ¥ p(x)log(p(x))
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