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Introduction 
 
What is sinusoidal frequency estimation? [1]-[3] 
 

Determine the frequency of a sinusoidal signal 
 

 Consider a sinusoid )cos()( θ+ω= tAts , the frequency is ω in 
radian or )/( πω 2  in Hz 

 

 The problem of sinusoidal frequency estimation is to 
estimate ω  given a noisy version of )(ts  and the major 
difficulty is that the frequency is nonlinear in the signal 

 

 Once the frequency is known, the amplitude and phase 
parameters are easily obtained as they can be 
transformed as linear parameters 

 

Similar terminologies include spectral analysis, spectral line 
estimation, harmonic retrieval  
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Application Areas 
 
 Wireless communications 
 

e.g., frequency shift keying (FSK) signal demodulation:  
 

)cos()( 1tts ω=   or  )cos()( 2tts ω= ? 
 

 Audio and speech signal processing 
 
 e.g., speech and music analysis using harmonic model: 
 

)cos()()( mm
M

m
tmctatx φ+ω∑=

=
0

1
 

 
 where  is the fundamental frequency or pitch 
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 Source localization 
 

 Position of a target can be obtained via direction-of-
arrival (DOA) estimation from signals received at an 
antenna array 

 
 DOA estimation model can be converted to the problem 

of frequency estimation 
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 Biomedical engineering 
 

e.g., nuclear magnetic resonance (NMR) or magnetic 
resonance spectroscopy (MRS) signal analysis 

 

)()( )( tweeAty tjj
m

M

m
mmm +∑= ω+λ−φ

=1
 

 
 Power electronics 

 

e.g., reliable frequency measurement in a power system 
is important for effective power control, load restoration 
and generator protection, and smart grid [4] 
 

 Instrumentation and measurement 
 

e.g., IEEE Standard for Digitalizing Waveform Recorder 
(IEEE Std. 1057-1994) [5] 
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Common 1D Signal Models 
 

 Complex tone model:  
 

n
njj

m
M

m
n qeeAx mmm +∑= ω+λ−φ

=

)(

1
,  110 −= Nn ,,,   

 

where }{ mA , }{ mφ , }{ mλ  and }{ mω  are constants while nq  
is a zero-mean white noise 

 

Simplest case:  n
nj

n qAex += φ+ω )(  
 

Using nonlinear least squares (NLS), optimum frequency 
estimation is achieved from: 
 

2)~~(1

0
~,~,~

~minarg)ˆ,ˆ,ˆ( φ+ω−

=φω
−∑=φω nj

n
N

nA
eAxA  
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 Real tone model:  
 

nmmm
M

m
n qnAx +φ+ω∑=

=
)cos(

1
,  110 −= Nn ,,,   

  
Simplest case:  nn qnAx +φ+ω= )cos(

    
Using NLS, optimum frequency estimation is achieved 
from:

  

( )21

0
~,~,~ )~~cos(~minarg)ˆ,ˆ,ˆ( φ+ω−∑=φω

−

=φω
nAxA n

N

nA  
 
As the cost functions are multi-modal, global solution is 
not guaranteed 
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Key Ideas in Algorithm Development 
 

 Linear prediction (LP) property of sinusoids 
 

 M (damped) complex sinusoid: ini
M

i
n sas −

=
∑−=

1
 

 

where }{ ia  are LP parameters characterized by 
frequencies 
 

e.g., for )( φ+ω= nj
n Aes : 

1−
ω ⋅= n

j
n ses ,    ω−= jea1  

 

 M (damped) real sinusoid: ini
M

i
n sas −

=
∑−=

2

1
 with iMi aa −= 2  

and 12 =Ma  
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e.g., for )cos( φ+ω= nAsn
  

212 −− −⋅ω= nnn sss )cos( ,   )cos(21 ω−=a , 12 =a  
 
Two advantages of LP: 
 
 Nonlinear frequency parameters are transformed into 

linear }{ ia  which simplifies the estimation process 
 
 Amplitude and phase parameters do not appear in the 

LP signal model which means that less parameters are 
needed for estimation 
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 Least squares (LS) or weighted least squares (WLS) 
 

e.g., given 11 qAx +=  and 22 qAx +=  
 
LS estimate for A is: 
 

[ ]
2~

~
~~minarg

)~(minargˆ

21

2

1
21~

2

1

2
~

xx
Ax
Ax

AxAx

AxA

A

i
i

A

+
=

















−
−

−−=

∑ −=
=

 

 

Two advantages of LS: 
 
 Low computational complexity  
 No prior noise information is needed 
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If the noise characteristics are known, i.e., }{ 2
1qE , 

}{ 21qqE  and }{ 2
2qE  are available, an optimum estimate is 

the WLS solution: 
 

















−
−

⋅⋅−−=
Ax
Ax

AxAxA
A ~

~
]~~[minargˆ

2

1
21~ W  

where 
1

2
121

21
2
1

}{}{
}{}{

−









=

qEqqE
qqEqEW  

 
 
The main advantage of WLS is high estimation accuracy 
while the increase in computational complexity is small 
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 Constrained optimization 
 
 
 
 

 

 
 

is equal to unconstrained optimization: 
 

 
 

 
 

 where   is data matrix and  is a LS cost 
function 

 
For the former, it can be solved by the method of 
Lagrange multipliers: 

 
 

( )ρΣρρYYρρ ~~1~~)~( TTT,L −λ+=λ  

1~~tosubject~~minargˆ
~

== ρΣρρYYρρ
ρ

TTT

ρΣρ
ρYYρρ

ρ ~~
~~

minargˆ
~ T

TT
=
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ρΣρYY

ρ
ρ

ˆˆ

0~
)~(

λ=⇒

=
∂

λ∂

T

,L

 

 
 

⇒ ρ̂  is generalized eigenvector corresponding to the 
smallest generalized eigenvalue of the pair ( )ΣYY ,T  

 
The main advantage of using constraints is to achieve 
unbiased frequency estimation 
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Proposed Algorithms 
 

1. Single real-tone estimation via LP, LS and constraint [6] 
 
 Recall signal model is:  
 

Nnqsx nnn ,,2,1, =+=  
 
 Recall )cos( φ+ω= nAsn  obeys 
 

21 −− −⋅ρ= nnn sss ,      )cos(2 ω=ρ  
 
 Construct LP error function: 
 

21
~

−− +ρ−= nnnn xxxe  
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 The LS or modified covariance (MC) estimate is simply: 
 

 

and 

  

  
which is known to be a biased estimator 
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 The biasedness can be examined from the expected 
value of the LS cost function: 

 

  

 
 because its noise component is also a function of ρ~: 
 
 Unbiased frequency estimation is attained by minimizing  

      subject to        

    or 
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 Direct minimization on the unconstrained optimization 
formulation will lead to a cubic equation so we use the 
transformation:  

  
    to convert it as: 

  

    with  
  
 
 Differentiating with respect to  and setting the resultant 

expression to zero: 
 

( )

0)ˆcos()ˆ(cos2

0)ˆcos()(

2

12
3

=−ω−ω⇒

=+ω+∑ −−
=

NNN

nnnn
N

n

ABA

xxxe
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where 

( ) 12
3

−−
=

+∑= nnn
N

n
N xxxA

 
and 

2
3

2
1

2
2

2
1

2 2 −
=

− ∑++−−= nn
N

n
NNN xxxxxxB

 
 

⇒












 ++
=ω −

N

NNN
A

ABB
4

8 22
1cosˆ  

 
 The frequency estimate is similar to the Pisarenko 

harmonic decomposition (PHD) method: 
 










 ++
=ω −

1

2
1

2
221

4
8

cosˆ
r

rrrPHD  
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which is obtained by finding the eigenvector 
corresponding to the smallest eigenvalue of: 
 
















=

012

101

210

rrr
rrr
rrr

R  

  where 
 

2,1,0,1
1

=∑
−

= +
−

=
kxx

kN
r knn

kN

n
k  

 









−
−−

+−= −

)2(2
2)2(2 1211

1 N
xxxxrrNA NN

N  

and 
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−
+−−

+−= −

)2(2
)2(2

22
1

2
2

2
1

2 N
xxxxrNB NN

N  

 
⇒ two estimators are identical at ∞→N  

 On-line implementation: 
 

( )1321 −−−− ++= NNNNN xxxAA
 and 

13
2

1
2

2
2

31 22 −−−−−− ++−+= NNNNNNN xxxxxBB
 

 ⇒ 8 additions, 7 multiplications, 1 division, 1 root operation 
and 1 1−cos  operation per sampling interval 
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 Variance analysis 
 

2

2

2222

22

222

22

2

2
SNR,

)(sin))2cos(2()2(SNR4
)4cos()2cos(43

)(sin)2SNR(
1

)(sin))2cos(2)(2(SNR
)(cos)2(cos

})ˆ{()ˆvar(

s
=

ωω+−
ω−ω+

+

ω−
+

ωω+−
ω+ω

≈

ω−ω=ω

A
N

N

N

E

 

      
 for   
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 Further approximation at high SNR: 
 

)(sin)2SNR(
1)ˆvar( 22 ω−

≈ω
N

 

 
Nevertheless, )ˆvar(ω

 
is frequency dependent and the 

frequency estimator is suboptimal as its performance 
cannot attain the Cramer-Rao lower bound (CRLB) at 

: 
 

)1(SNR
12)CRLB( 2 −⋅

≈ω
NN
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Mean square frequency errors versus ω at SNR = 20 dB & N=10 
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Mean square frequency errors versus ω at SNR = 20 dB & N=400 
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2. Single real-tone estimation via LP, WLS and constraint [7] 
 
 Recall the LP error function: 
 

21
~

−− +ρ−= nnnn xxxe ,      )cos(2 ω=ρ  
 
 An alternate form is 
 

( ) ρ−=++= −−
~~/~,~~

011120 aaxaxxae nnnn  
 
 In vector form of T

NN eee ],,,[ 31 −=e : 
 

aQaSaXe ~~~ +==  
where 

 
Taa ]~,~[~

10=a  
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+
+

= −−−
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12

sss

sss
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+

+
+

= −−−

−−

213

231

12

qqq

qqq
qqq

NNN
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 The WLS cost function is then: 
 

aWXXaWee ~~ TTT =  

where 
{ }( ) 1−

= TE εεW  
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[ ]TNN 221 εεε= −− ,,, ε  
 

( ) 2110 −− ++=ε nnnn qaqqa  

 

Taking expected value yields: 
 

}{~~~~}{ WQQγaγaaWS)a(SWee TTTT E,E =+=  
 

 As a result, unbiased WLS estimate is 
 

1~~tosubject~~minargˆ
~

== aγaaWXXaa
a

TTT  
 

where 








 +
=

01

120

2
22
DD
DDD )(

γ ,      [ ] jii
jLN

i
jD +

−−

=
∑= ,W

1
 

 



H. C. So                                                                        Page 29                                      

 

 By the method of Lagrange multipliers: 
 

 

( )aγaaWXXaa ~~1~~)~( TTT,L −λ+=λ  
 

aγaWXX
a
a ˆˆ0~

)~(
λ=⇒=

∂
λ∂ T,L

 
 

⇒ â is generalized eigenvector corresponding to the 
smallest generalized eigenvalue of the pair ( )γWXX ,T  
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 Since W  is unknown, the constrained WLS solution is 
determined using an iterative procedure: 

 
(i) Find initial estimate of a from generalized eigenvalue 

decomposition of ( )γWXX ,T   with IW =  
 

(ii) Use â to construct W and γ  
 

(iii) Determine an updated estimate from generalized 
eigenvalue decomposition of ( )γWXX ,T   

 

(iv) Repeat (ii)-(iii) until a stopping criterion is reached 
 

(v) The frequency estimate is computed as: 
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Mean square frequency errors versus ω at SNR = 10 dB & N=20 
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Mean square frequency errors versus ω at SNR = 10 dB & N=200 
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3. Single complex-tone estimation via LP and WLS [8] 
 

 Recall )( φ+ω= nj
n Aes  obeys 

 

1−⋅ρ= nn ss ,      ω=ρ je  
 
 Construct a LP error function: 
 

1
~

−ρ−= nnn xxe  
 
 In matrix form: 

21 XXe ρ−= ~  
where 

T
NN eee ],,,[ 121 −−=e  

 

T
NN xxx ],,,[ 121 −−=1X ,  T

NN xxx ],,,[ 032 −−=2X  
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 The WLS cost function is 
 

)~()~(ρ~ 2121 XXWXXWee)( ρ−ρ−== HHJ  
 

⇒
      22

12

WXX
WXX

H

H
=ρ̂  

 
 The optimum weighting matrix is 
 

1

2

2

2

2

1*000
1*00

001*
0001

−























ρ+ρ−

ρ−ρ+ρ−

ρ−ρ+ρ−

ρ−ρ+

=











W  
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 W can be simplified by putting ω=ρ je : 
 

 
    The frequency estimate is now simplified as 
 

( )12
22

12 WXX
WXX
WXX H

H

H
∠=










∠=ω̂  

 
   as 22 WXX H

  
is real and positive 
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 Since W  is unknown, the WLS solution is determined 
using an iterative procedure: 

 
(i) Find an initial frequency estimate, e.g., i.e.,  
 

( )12 XX H∠=ω̂  
 

(ii) Use ω̂ to construct W 
 

(iii) Determine an updated frequency estimate using  
 

( )12 WXX H∠=ω̂  
 

(iv) Repeat (ii)-(iii) until a stopping criterion is reached 
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Mean square frequency errors versus SNR at π=ω 10.  & N=10 
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Mean square frequency errors versus ω at SNR=10dB & N=20 
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Common 2D Signal Models 
 

 Complex 2D single-tone model:  
 

 
 

where  is the unknown complex amplitude,  
and  are the unknown 2D frequencies while  
is a zero-mean white Gaussian noise with unknown 
variance   

 
 

 Complex 2D damped single-tone model:  
 

 
 

where the additional unknown parameters are  and , 
which are the associated damping factors for  and  
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 Complex 2D damped multiple-tone model:  
 

 

 
where  are the unknown complex amplitude,  and 

 are the unknown 2D frequencies and the number of 
tones, , is assumed known 

 
 Real 2D single-tone model: 
 

 
 

where , ,   and the additional 
unknown parameters are  and  which 
are the associated phases for  and  
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 Real 2D damped single-tone model: 
 

 
 

 Real 2D damped multiple-tone model: 
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Key Ideas in Algorithm Development 
 

 Utilizing principal singular vectors of    
 

Frequency estimation is performed using principal 
singular vectors of   whose sizes are  and 

, instead of raw data with size of  
 

Expressing the 2D data as  where  and let its    
singular vector decomposition (SVD) be 

 
  
     

where   and .  
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In case of a complex single-tone, we use  and  to find 
frequencies 
 

 Applying generalized weighted linear predictor (GWLP)  
 

Recall the GWLP approach [8] which utilizes WLS and 
sinusoidal LP property for 1D frequency estimation 
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Proposed Algorithms 
 
 
 Complex 2D single-tone model [9]:  
 
  Recall signal model is:  
 

 
   
  Let its matrix representation be: 
 

 
 

where  and  are the signal and noise components, 
respectively 

 
  First,  can be factorized as: 
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  where 
  
  

  
 
    Thus  and  satisfy the LP property: 
 

 
 

 
 

where   represents the th element in the vector  
 
However, it is not straightforward to estimate  and  
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On the other hand, noting the rank-1 property of  and 
assuming that , its SVD is 
 

 
where  

,    
 

 
 

 
It can be shown that  

 
 

 

 
 

 
 

   with unknown  and   
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That is, we can utilize  to find  and  to find  
 
In practice, the best rank-1 estimate of  is obtained 
from SVD of : 

 
Let 

 
 

 
 

 
 
According to LP property, we have: 
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    The WLS solution for  is: 
 

 

 
The optimum weighting matrix is obtained from: 

 

 
where  
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Making use of the first-order approximation [10]: 
 

,       
 

We get: 
 

 
Utilizing  and ,  is simplified 
as: 

 
 
Changing the variable from  to  yields closed-form 
computation for : 
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We finally have: 
  
  

We follow the GWLP procedure to find : 
 
(i) Obtain an initial frequency estimate using  

with  for  
 
(ii) Use  to construct  

 
(iii) Compute an updated  

 
(iv) Repeat Steps (ii)-(iii) until a stopping criterion is 

reached 
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In a similar manner,  is estimated from  and its 
conceptual solution is: 

 
   
    where 
   

 
  

 
It is noteworthy that  and  are independently 
estimated from the left and right principal singular 
vectors 
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At sufficiently high SNRs, it is proved that: 
 

 
 

 

 
with , which is CRLB. Similarly, we have: 
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Mean square error of  versus SNR 
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Mean square error of  versus SNR 
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Mean square error of  versus  at SNR = 5 dB 
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 Complex 2D damped single-tone model [9]:  
 

 
 
  In a similar manner,  can be factorized as: 
 

 

   
  where 
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Now  and  satisfy the LP property: 
 

 

 
 
 

 
 

      
    The conceptual WLS solution for  is: 
 

 

 
We follow the GWLP procedure and finally: 
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Mean square error of  versus SNR 
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Mean square error of  versus SNR 
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Mean square error of  versus SNR 
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Mean square error of  versus SNR 
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 Real 2D damped single-tone model [9]: 
 

 
 

  Now  can be factorized as: 
 

 
  where 
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The LP property in  and  can be observed as: 
 

  
 
  

 
where 
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Utilizing the LP property, we have: 
 

   
where 
 

  
 

 
 

  
 
Following the GWLP development,  is estimated as: 
 

 
    where 
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After algorithm convergence, the damping factor and 
frequency are estimated as 

 
 

 
 

 
Similarly,  and  are estimated independently from the 
right principal singular vector: 
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Mean square error of  versus SNR 
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Mean square error of  versus SNR 
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 Complex 2D damped multiple-tone model [11]:  
 

 

 
  Now  can be factorized as: 
 

 
  where 
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  On the other hand, the SVD of   is: 
 

 
  where 

 
 

 
 

 
 
Comparing  and  yields 
 

 
 
where  is unknown. That is, each column of  is a 
sum of  multiple tones with damping factors  and 
frequencies  
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Average mean square frequency error versus SNR 
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 Real 2D damped multiple-tone model: 
 

 

 
  Now  can be factorized as: 
 

 
  where 
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Average mean square frequency error versus SNR 
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