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Abstract

Kriging algorithms based on FFT, the separability of certain co-
variance functions and low-rank representations of covariance
functions have been investigated. The current study combines
these ideas, and so combines the individual speedup factors of
all ideas. The reduced computational complexity is O(dLlogL),
where L := maxini, i = 1..d. For separable covariance functions,
the results are exact, and non-separable covariance functions
can be approximated through sums of separable components.
Speedup factor is 108, problem sizes 15e + 12 and 2e + 15 estima-
tion points for Kriging and spatial design.

1. Kriging

Task 1: Let m be number of measurement points, n number of
estimation points. Let ŝ 2 Rn be the kriging vector to be esti-
mated with mean µs = 0 and cov. matrix Qss 2 Rn⇥n:

ŝ = Qsy Q�1
yy y

| {z }
⇠

.

where y 2 Rm vector of measurement values, Qsy 2 Rn⇥m cross
cov. matrix and Qyy 2 Rm⇥m auto cov. matrix.
Task 2: Estimation of Variance �̂s 2 Rn Let Qss|y be the condi-
tional covariance matrix. Then

�̂s = diag(Qss|y) = diag
⇣
Qss � QsyQ

�1
yy Qys

⌘

= diag (Qss) �
mX

i=1

h
(QsyQ

�1
yy ei) � QT

ys(i)
i
,

where QT
ys(i) is the transpose of the i-th row in Qys.

Task 3: Geostatistical optimal design The goal is to optimize
sampling patterns from which the data values in y are to be ob-
tained. Two most common objective function to be minimized
are:

�A = n�1 trace
h
Qss|y

i
and

�C = cTQss|yc = cT (Qss � QsyQ
�1
yy Qys)c

= �2
z � (cTQsy)Q�1

yy (Qysc),

with �2
z = cTQssc.

Any Toeplitz covariance matrix Qss 2 Rn⇥n (the first column
is denoted by q) can be embedded in a larger circulant matrix
Q̌ 2 Rň⇥ň (the first column is denoted by q̌).
Sampling and Injection: Consider the m ⇥ n sampling matrix H:

Hi,j =

⇢
1 for xi = xj
0 otherwise ,

where xi are the coordinates of the i-th measurement location in
y, and xj are the coordinates of the j-th estimation point in s.

sampling: ⇠m⇥1 = Hun⇥1

injection: un⇥1 = HT⇠m⇥1

Qys = HQss and Qsy = QssH
T

Qyy = HQssH
T + R

Qsy⇠ = QssH
T⇠ = Qss

⇣
HT⇠

⌘

| {z }
u

.

Embedding and extraction: Let M 2 Rň⇥n maps the entries of
the finite embedded domain onto the periodic embedding do-
main. M has one single entry of unity per column. Extraction

of an embedded Toeplitz matrix Qss from the embedding circu-
lant matrix Q̌ as follows:

Qss = MT Q̌M, q = Mq̌.

Kriging vector can be efficiently estimated via d-dimensional FFT:

(Qsy⇠ =)Qssu = MT Q̌Mu = MTF [�d]
⇣
F [d] (q̌) � F [d] (Mu)

⌘
.

2. Low-rank kriging via FFT

Lemma 1 Let u =
Pku

j=1

Nd
i=1 uji, where u 2 Rn, uji 2 Rni

and n =
Qd

i=1 ni. Then the d-dimensional Fourier transformation
ũ = F [d](u) is

ũ =

kuX

j=1

dO

i=1

�
Fi

�
uji

��

Lemma 2 Let u and q have CP representation, then

u � q =

0
@

kuX

j=1

dO

i=1

uji

1
A �

0
@

kqX

`=1

dO

i=1

q`i

1
A =

kuX

j=1

kqX

`=1

dO

i=1

�
uji � q`i

�
.

F [d](u � q) =

kuX

`=1

kqX

j=1

dO

i=1

�
Fi

�
uji � q`i

��
.

2.1 Accuracy
If

kq � q(kq)kF  "q,
kq � q(kq)kF

kqkF
 "rel,q.

Then

kQss � Q
(kq)
ss kF  p

n"q,
kQss � Q

(kq)
ss kF

kQsskF
 "rel,q .

2.2 d-dimensional embedding/extraction

Since M[d] =
Nd

i=1 Mi, have

ǔ = M[d]u =

0
@

dO

i=1

Mi

1
A·

kuX

j=1

dO

i=1

uji =

kuX

j=1

dO

i=1

Miuji =:

kuX

j=1

dO

i=1

ǔji,

2.3 Low-rank kriging estimate Qssu

Qssu ⇡ Q
(kq)
ss u(ku) =

kqX

`=1

kuX

j=1

dO

i=1

MT
i F�1

i

⇥
(Fiq̌`i) � (Fiǔji)

⇤
.

with accuracy

kQssu � Q
(kq)
ss u(ku)kF  p

n"qkuk + kQssk · "u.

The total costs is O(kukqd Ľ⇤ log Ľ⇤) instead of O(ň log ň), with
Ľ⇤ = maxi=1...d ňi and ň =

Qd
i=1 ň.

Kriging estimator

ŝ = Qsy⇠ = QssH
T⇠ = MT Q̌MHT⇠.

can be written in the CP tensor format

ŝ = Qsy⇠ =

mX

j=1

⇠j

kqX

`=1

dO

i=1

⇣
MT

i F�1
i

⇥
(Fiq̌`i) � (Fiȟji)

⇤⌘
.

3. Numerics: CPU time and storage

Figure 1: CPU time of the four different methods depending on
the number of lattice points in a rectangular domain.

Figure 2: Memory requirements of the four different methods de-
pending on the number of lattice points in a rectangular domain.

Example: concentration of an ore mineral

Domain: 20m ⇥ 20m ⇥ 20m, n = 250003 dofs., m = 4000
measurements randomly distributed within the volume, with
increasing data density towards the lower left back cor-
ner of the domain. The covariance model is anisotropic
Gaussian with unit variance and with 32 correlation lengths
fitting into the domain in the horizontal directions, and
64 correlation lengths fitting into the vertical direction.

Figure 3: The top left figure shows the entire domain at a sam-
pling rate of 1:64 per direction, and then a series of zooms into
the respective lower left back corner with zoom factors (sampling
rates) of 4 (1:16), 16 (1:4), 64 (1:1) for the top right, bottom left
and bottom right plots, respectively. Color scale: showing the
95% confidence interval [µ � 2�, µ + 2�].

4. Conclusion

We develop new algorithms for large-scale Kriging problems (in-
cluding the estimation variance and measures for the optimality
of sampling patterns), combining low-rank tensor approximations
with existing fast methods based on the FFT. The computational
cost is O(kqmdL⇤ log L⇤), where kq is the rank, m number of mea-
surements, d dimension and L⇤ = max(ni) with n =

Qd
i=1 ni.

Memory cost: O
�
[kq + m]dL

�
, where L =

Pd
i=1 ni.

• 2D Kriging with 2.7e+7 estimation points and 100 measure-
ment values takes 0.25 sec.,

• the estimation variance takes < 1 sec.,

• the spatial average of the estimation variance (the A-criterion
of geostat. optimal design) for 2 · 1012 estim. points takes 30
sec.,

• the C-criterion of geostat. optimal design for 2 · 1015 estimation
points takes 30 sec.,

• 3D Kriging problem with 15 · 1012 estimation points and 4000
measurement data values takes 20 sec.
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1. Abstract

•We address the problem of robust adaptive beamforming of
signals received by a linear array.
• The challenge associated with the beamforming problem is

twofold. Firstly, the process requires the inversion of an ill-
conditioned covariance matrix of the received signals. Sec-
ondly, the steering vector pertaining to the direction of arrival
of the signal of interest is not known precisely.
• To tackle these two challenges, we manipulate the standard

capon beamformer to a form where the beamformer output is
obtained as a scaled version of the inner product of two vec-
tors that are linearly related to the steering vector and the re-
ceived signal snapshot. The linear operator, in both cases, is
the square root of the covariance matrix.
•We proposed a new regularized least-squares (RLS) approach

to estimate these two vectors and to provide robustness with-
out any prior information.

2. Background

• Let us consider the linear model

r = Ax + v, (1)

where
– A ∈ Cm×n is a Hermitian matrix.
– v is AWGN noise vector with unknown variance σ2v.
• Estimating x using the least-squares (LS) leads to a solution

that is very sensitive to perturbations in the data.
• To overcome this difficulty, regularization methods are fre-

quently used. We are particularly interested in the RLS given
by

x̂RLS = (AHA + γI)−1AHr, (2)

• Several methods have been proposed to select γ
– L-curve.
– generalized cross validation (GCV).
– quasi-optimal.

3. Proposed Beamforming Approach

• The output of a beamformer for an array with ne elements, at
time instant t, is

yBF[t] = wHy[t], (3)
where:
– w ∈ Cne is the weighting coefficients vector.
– y[t] ∈ Cne is the array observations (snapshots) vector.

• For the Capon/MVDR beamformer, w is given by

wMVDR =
Ĉ−1yya

aHĈ−1yya
, (4)

where:
– a: array steering vector.
– Ĉyy: sample covariance matrix of y

Ĉyy =
1

ns

ns∑

t=1

y[t]y[t]H . (5)

• The difficulty with the MVDR beamformer is due to the ill-
conditionedness of the matrix Ĉyy and the uncertainty in the
steering vector a.
• Based on (3) and (4), we can write

yBF[t] =
aHĈ

−1
2

yyĈ
−1

2
yyy

aH Ĉ
−1

2
yyĈ

−1
2

yya
=

bHz

bHb
, (6)

where:

– b , Ĉ
−1

2
yya and z , Ĉ

−1
2

yyy.
• b and z can be thought of as

a = Ĉ
1
2
yyb, (7)

and

y = Ĉ
1
2
yyz. (8)

• Since Ĉ
1
2
yy is ill-conditioned, direct inversion does not provide

a viable solution.

•Given that a and y are noisy, we propose using a regularization
algorithm to estimate b and z based on (7) and (8).

•Using (2) for A = Ĉ
1
2
yy and the eigenvalue decomposition

(EVD) Ĉyy = UΣ2UH , the beamformer output using RLS will
take the form

yBF-RLS =
aHU

(
Σ2 + γbI

)−1 (
Σ2 + γzI

)−1
Σ2UHy

aHU
(
Σ2 + γbI

)−2
Σ2UHa

, (9)

where:

– γb and γz are the regularization parameters pertaining to the
linear systems (7) and (8), respectively.

• Equation (9) suggests that the weighting coefficients are given
by

wBF-RLS =
aHU

(
Σ2 + γbI

)−1 (
Σ2 + γzI

)−1
Σ2UH

aHU
(
Σ2 + γbI

)−2
Σ2UHa

. (10)

• Existing regularization methods can be used to find γb and γz
in (10).
•We will introduce a new regularization approach called MVDR

constrained perturbation regularization approach (MVDR-
COPRA) that is based on exploiting the eigenvalue structure

of Ĉ
1
2
yy in order to find γb and γz in (10).

• To this end, we replace A in (1) by Ĉ
1
2
yy to obtain the model

r = Ĉ
1
2
yyx + v. (11)

4. Proposed MVDR-COPRA

• As a form of regularization, we allow a perturbation ∆ into

Ĉ
1
2
yy.

• This perturbation is aimed to improve the eigenvalue structure

of Ĉ
1
2
yy.

• To maintain the balance between improving the eigenvalue
structure and maintaining the fidelity of the model in (11), we
add the constraint ||∆||2 ≤ λ, λ ∈ R+.
• Thus, (11) is modified to

r ≈
(

Ĉ
1
2
yy + ∆

)
x + v. (12)

• Assuming that we know the best choice of λ, we consider min-
imizing the worst-case residual function of (12)

min
x̂

max
∆
||r−

(
Ĉ

1
2
yy + ∆

)
x̂||2

subject to ||∆||2 ≤ λ. (13)

• It can be shown that (13) is equivalent to

min
x̂
||r− Ĉ

1
2
yyx̂||2 + λ ||x̂||2. (14)

• The solution to (14) is given by:

x̂ =
(
Ĉyy + γI

)−1
Ĉ

1
2
yyr, (15)

where γ is obtained by solving

G(γ) = yTU
(
Σ2 − λ2I

)(
Σ2 + γI

)−2
UTy = 0. (16)

• The solution requires knowledge of λ, which we do not know.
• By taking the expectation to (16) we can manipulate to get

λ2o =
σ2v tr

(
Σ2
(
Σ2 + γoI

)−2)
+ tr

(
Σ2
(
Σ2 + γoI

)−2
Σ2UHCxxU

)

σ2v tr
((

Σ2 + γoI
)−2)

+ tr
((

Σ2 + γoI
)−2

Σ2UHCxxU
) . (17)

•Divide Σ into n1 large and n2 small eigenvalues.

•Write Σ =

[
Σ1 0
0 Σ2

]
and U = [U1 U2].

– Σ1 ∈ Cn1×n1 (large eigenvalues).

– Σ2 ∈ Cn2×n2 (small eigenvalues).

– ‖Σ2‖2� ‖Σ1‖2.
• Apply the partitioning to (17), with some manipulations and

reasonable approximations to get

λ2o ≈
tr
(
Σ2
1

(
Σ2
1 + γoI1

)−2 (
Σ2
1 +

n1σ
2
v

tr(Cxx)
I1

))

tr
((

Σ2
1 + γoI1

)−2 (
Σ2
1 +

n1σ2v
tr(Cxx)

I1

))
+ n2
γ2o

n1σ2v
tr(Cxx)

. (18)

• Problem: λo dependents on σ2v and Cxx which are not known.
•We apply the MSE criterion to eliminate this dependency and

to set λo that minimizes the MSE approximately.

5. Minimizing the MSE

• The MSE for an estimate x̂ of x can be defined as

MSE = tr
{
E
(
(x̂− x)(x̂− x)H

)}
, (19)

•We manipulate the MSE to the form:

MSE = σ2vtr
(
Σ2
(
Σ2 + γI

)−2)
+ γ2tr

((
Σ2 + γI

)−2
UHCxxU

)
.

(20)

• The first derivative can be obtained as

∂ (MSE)
∂ γ

= −2σ2vtr
(
Σ2
(
Σ2 + γI

)−3)
+ 2γ tr

(
Σ2
(
Σ2 + γI

)−3
UHCxxU

)
= 0.

(21)

• Solving (21) does not provide a closed-form expression for γo.
By using an approximation we obtain

γo ≈
neσ

2
v

tr (Cxx)
. (22)

• From (18) we can replace the following

n1σ
2
v

tr (Cxx)
→ n1

ne
γo.

• Substitute this results in (18) and then substitute (18) in (16).

•MVDR-COPRA characteristic equation:

S (γo) = tr
(
Σ2
(
Σ2 + γoI

)−2
ddH

)
tr
((

Σ2
1 + γoI1

)−2 (
βΣ2

1 + γoI1
))

− tr
((

Σ2 + γoI
)−2

ddH
)

tr
(
Σ2

1

(
Σ2

1 + γoI1
)−2 (

βΣ2
1 + γoI1

))

+
n2
γo

tr
(
Σ2
(
Σ2 + γoI

)−2
ddH

)
= 0, (23)

where d , UTy, and β , ne
n1

.

6. Simulation Results

• Setup:

– Uniform linear array with 10 elements placed at half of the
wavelength of the signal of interest and two interfering sig-
nals.

– The directions of arrival (DOA) for the signal of interest and
the interference are generated from a uniform distribution in
the interval [−90o, 90o].

– The steering vector a is calculated from the true DOA of the
signal of interest plus a uniformly distributed error in the in-
terval [−5o, 5o].
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Figure 1: Output SINR vs input SNR for ns = 30.
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Figure 2: Output SINR vs number of snapshots at SNR = 20 dB.

7. Conclusions

• The robust MVDR beamforming is converted to a pair of lin-
ear estimation problems with ill-conditioned matrices and new
regularization method is proposed to solve these problems.

• Simulations demonstrate that the proposed approach outper-
forms a number of benchmark methods in terms of SINR.


