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e \We address the problem of robust adaptive beamforming of
signals received by a linear array.

e The challenge associated with the beamforming problem is
twofold. Firstly, the process requires the inversion of an ill-
conditioned covariance matrix of the received signals. Sec-
ondly, the steering vector pertaining to the direction of arrival
of the signal of interest is not known precisely.

e 10 tackle these two challenges, we manipulate the standard
capon beamformer to a form where the beamformer output is
obtained as a scaled version of the inner product of two vec-
tors that are linearly related to the steering vector and the re-
ceived signal snapshot. The linear operator, in both cases, is
the square root of the covariance matrix.

e We proposed a new reqgularized least-squares (RLS) approach
to estimate these two vectors and to provide robustness with-
out any prior information.

2. Background

e Let us consider the linear model
r=Ax+v, (1)

where
— A € C"*" is a Hermitian matrix.
—v is AWGN noise vector with unknown variance o2.

e Estimating x using the least-squares (LS) leads to a solution
that is very sensitive to perturbations in the data.

e To overcome this difficulty, regularization methods are fre-
qguently used. We are particularly interested in the RLS given
by

%pLs = (ATA +91) 1Ay, (2)

e Several methods have been proposed to select v

—L-curve.
— generalized cross validation (GCV).
— quasi-optimal.

3. Proposed Beamforming Approach

e The output of a beamformer for an array with ne elements, at
time instant ¢, is

yprlt] = wlylt], (3)
where:

—w € C"¢ is the weighting coefficients vector.
—y|t] € C" is the array observations (snapshots) vector.

e For the Capon/MVDR beamformer, w is given by
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where:

— a: array Steering vector.
— Cyy: sample covariance matrix of y

Cyy = > ylilyli". 5)
% t=1

e The difficulty with the MVDR beamformer is due to the ill-
conditionedness of the matrix Cyy and the uncertainty in the
steering vector a.

e Based on (3) and (4), we can write

where:
1 1

-b £ Cygaand z £ CyJy.
e b and z can be thought of as

a = Ciyb, (7)

l<l\:>|)—\

and
1
y = Cyyz. (8)

1
e Since Cyy is ill-conditioned, direct inversion does not provide

a viable solution.

e Given that a and y are noisy, we propose using a regularization

algorithm to estimate b and z based on (7) and (8).
1

e Using (2) for A = C}, and the eigenvalue decomposition

(EVD) Cyy = UX?U¥, the beamformer output using RLS will
take the form

allU (22 4 1) (B2 +10) D20y
allU (2 + ypI) "~ 22U a

. (9)
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-, and vz are the regularization parameters pertaining to the
linear systems (7) and (8), respectively.

e Equation (9) suggests that the weighting coefficients are given
by
allU (22 4 1) 7 (22 4+ 4,0) ' 22UH

2 —2 2 (10)
allU (X% + I) "X Ula
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e Existing regularization methods can be used to find v, and -
in (10).

e We will introduce a new regularization approach called MVDR
constrained perturbation regularization approach (MVDR-
COPRA) that is based on exploiting the eigenvalue structure

1

of C3,, in order to find ~, and ~z in (10).

.1
e To this end, we replace A in (1) by C5,y, to obtain the model

yX + V. (11)

4. Proposed MVDR-COPRA

e As a form of regularization, we allow a perturbation A into
1
2
Cyy.

e This perturbation is aimed to improve the eigenvalue structure
1
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e T0 maintain the balance between improving the eigenvalue
structure and maintaining the fidelity of the model in (11), we
add the constraint [|A]ls <\, A € RT.

e Thus, (11) is modified to
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e Assuming that we know the best choice of A, we consider min-
imizing the worst-case residual function of (12)

Q<[\9|,_.

y+A>X+V. (12)
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subject to ||All|s < A. (13)

e It can be shown that (13) is equivalent to

1

min ||r — C3yX||2 + A |[%]|2- (14)
X
e The solution to (14) is given by:
. —1 .1
where v is obtained by solving
—2
G(7) =y"U (22 = N1) (22 491) "UTy=0.  (16)

e The solution requires knowledge of A\, which we do not know.
e By taking the expectation to (16) we can manipulate to get

o tr (22 (52 4 900) ) +1r (22 (22 4 01) 22U CU)
(17)
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e Divide X into ny large and no small eigenvalues.
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-3 € C*™ (large eigenvalues).

] and U = [U; Uy].

-9 € C"*"™2 (small eigenvalues).

- 157 < 211"
e Apply the partitioning to (17), with some manipulations and
reasonable approximations to get
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e Problem: \g dependents on o2 and Cxx Which are not known.

e We apply the MSE criterion to eliminate this dependency and
to set \g that minimizes the MSE approximately.

e The MSE for an estimate x of x can be defined as

MSE:tr{E ((&—X)(&—X)H)}, (19)

e We manipulate the MSE to the form:

MSE = o2tr (32 (27 4 91) ) + +%r (224 41) "U7CQU).
(20)

e The first derivative can be obtained as

9 (MSE)
0

— =202t (32 (224 91) ) 42y tr (32 (224 41) T UTCLU) =0,
(21)

e Solving (21) does not provide a closed-form expression for ~o.
By using an approximation we obtain

neo

Yo ~ r (Cxx). (22)

e From (18) we can replace the following

nlcf% nq

ir (Cx) 700

e Substitute this results in (18) and then substitute (18) in (16).
e MVDR-COPRA characteristic equation:

S (7o) = tr (B2 (22 + 701) dd™ ) tr (27 +70L) (8% + 1))
—tr (324 90)dd?) tr (B (B +700) (B + 1))

+ 2 (2% (32 +70D) " dd”) =, (23)
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6. Simulation Results

e Setup:

— Uniform linear array with 10 elements placed at half of the
wavelength of the signal of interest and two interfering sig-
nals.

— The directions of arrival (DOA) for the signal of interest and
the interference are generated from a uniform distribution in
the interval [—90°, 90°].

— The steering vector a is calculated from the true DOA of the
signal of interest plus a uniformly distributed error in the in-
terval [—5°, 59].
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Figure 1: Output SINR vs input SNR for ng = 30.
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Figure 2: Output SINR vs number of snapshots at SNR = 20 dB.

7. Conclusions

e The robust MVDR beamforming is converted to a pair of lin-
ear estimation problems with ill-conditioned matrices and new
regularization method is proposed to solve these problems.

e Simulations demonstrate that the proposed approach outper-
forms a number of benchmark methods in terms of SINR.



