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Part 1. Robust Foreground Detection

Published in:

m V. Reddy, C. Sanderson, B.C. Lovell.
Improved Foreground Detection via Block-based Classifier
Cascade with Probabilistic Decision Integration.

IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 23, No. 1, 2013.

m official version: http://dx.doi.org/10.1109/TCSVT.2012.2203199
m arXiv pre-print: http://arxiv.org/pdf/1303.4160v1
m C++ source code: http://arma.sourceforge.net/foreground/

Algorithm integrated into a commercial surveillance product!


http://dx.doi.org/10.1109/TCSVT.2012.2203199
http://arxiv.org/pdf/1303.4160v1
http://arma.sourceforge.net/foreground/

m Early approaches to foreground segmentation:
m obtain clear view of the background
m given a frame, subtract the background
m leftover pixels: foreground

m Problems:
m background changes with time (eg. illumination changes)
m noisy .. clean up pixels using ad-hoc post-processing
(eg. erosion)

m Common approach:
m model each background location with a stochastic model
m pixels with low probability: foreground
m adapt model to take into account background changes
m better, but still noisy, still requires ad-hoc post-processing

m Core problems:
m classification done at the pixel level
m rich contextual information not taken into account
m foreground segmentation # background subtraction



Proposed Method

m divide given image into overlapping blocks
m generate low-dimensional descriptors for each block

m classify each block into foreground/background
m use a classifier cascade

m for each pixel integrate block level decisions
m results in pixel-level foreground/background segmentation
m ad-hoc post-processing not necessary

m background model re-initialisation
m for scenarios with sudden and significant scene changes



Step 1

m divide given image into overlapping blocks
m block size: 8 x 8

m generate low-dimensional descriptors for each block:

r r b b
dij = [cé]j...,célj Cc[)],"',C‘L,], C([)],”~,C£]]

c,[,k] = n-th 2D DCT coefficient for the k-th colour {r, g, b}



Step 2

m initial classification of each block into foreground/background
m use a classifier cascade
m as soon as one classifier classifies as background

m each stage stage analyses a block from a unique perspective:
i: texture analysis: p(d(,)_,)) = N(d(“}) | u(,J),Z(,J))

B background model for each block
B background model trained using a robust method, capable of using a cluttered background
B background model is adapted during execution

if p(dij)) > T : classify as background
i shadow: if cosdist(d(; j), p(; ;) < Ci : classify as background

iii: temporal correlation check: classify block as background if:
(a) dEF;‘rJ.e)V] was classified as background, AND

(b) cosdist(d?>1, d(; ) < G



Step 3

BG
BG FG
/v
block A block B

= no overlapping:
misclassification inevitable at the pixel level

m with overlapping:
for each pixel, integrate initial classifications of all relevant
blocks:
fg

B . .
_ Plxy) num. of foreground blocks containing pixel /(x, y)
P(fg | lixy))

- B(‘;";') total num. of blocks containing pixel /(x, y)

m classify pixel /(x,y) as foreground if P (fg | /,)) >0.90

m no need for any ad-hoc post-processing!



N
Trade-Off: Accuracy vs Speed

m sliding block-by-block analysis
m each block is 8x8

m blocks are overlapping

m 1 pixel advance = max overlap

m 8 pixel advance no overlap

2 recall-precision

m f-measure = recall+precision

m Achieves real-time processing
at the cost of slightly reduced
accuracy (2 pixel advance)

image ground truth
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Comparative Evaluation
m Datasets:

m [2R: http://perception.i2r.a-star.edu.sg/bk_model /bk_index.html
m Wallflower: research.microsoft.com/en-us/um/people/jckrumm/WallFlower/ Testimages.htm

m Compare with:

= GMM based [1] (with morphological post-processing)

m feature histograms [2]

= Normalised Vector Distances (NVD) 18] (block based approach)
m Probabilistic Self-Organizing Maps (SOM) [4]

m Stochastic Approximation (SA) [

lp, KaewTraKulPong et al.: An improved adaptive background mixture model for real-time tracking with
shadow detection. In: Proc. European Workshop Advanced Video Based Surveillance Systems (2001).

2L Lietal: Foreground object detection from videos containing complex background. |In: Proc. International
Conference on Multimedia (2003).

3T Matsuyama et al.: Background subtraction under varying illumination. |n: Systems and Computers in
Japan 37.4 (2006).

4Ezequiel Lépez-Rubio et al.: Foreground detection in video sequences with probabilistic self-organizing maps.
In: International Journal of Neural Systems 21.3 (2011).

5Ezequiel Lépez-Rubio et al.: Stochastic approximation for background modelling. In: CVIU 115.6 (2011).


http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm

original images

ground truth

GMM

(with post-processing!)

NVD

proposed method
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m On average, the proposed method obtains more accurate
foreground detection

m More consistent performance across various environments

Does not require any ad-hoc post-processing

m Can achieve real-time processing

C++ implementation available as open source code:
http://arma.sourceforge.net /foreground /


http://arma.sourceforge.net/foreground/

Part 2: Person Re-ldentification

Published in:

m A. Alavi, Y. Yang, M. Harandi, C. Sanderson.
Multi-Shot Person Re-ldentification via Relational Stein Divergence.
IEEE International Conference on Image Processing (ICIP), 2013.

m official version: http://dx.doi.org/10.1109/1CIP.2013.6738731
m arXiv pre-print: http://arxiv.org/pdf/1403.0699v1


http://dx.doi.org/10.1109/ICIP.2013.6738731
http://arxiv.org/pdf/1403.0699v1

m Given images of a person from camera view 1,
find matching person from camera view 2

m Difficult:

imperfect person detection / localisation
large pose changes

occlusions

illumination changes

low resolution



Popular Previous Approaches

Partial Least Squares (PLS) based [°]

decompose an image into overlapping blocks

extracts features from each block: textures, edges, colours
concatenated into one feature vector (high dimensional)
learn discriminative dimensionality reduction for each person
classification: projection to each model + Euclidean distance

downsides:

m concatenation = fixed spatial relations between blocks
m . does not allow for movement of blocks!
m .. easily affected by imperfect localisation and pose variations

SW.R. Schwartz et al.: Learning discriminative appearance-based models using partial least squares. |In:
SIBGRAPI (2009).



Symmetry-Driven Accumulation of Local Features (SDALF)I7]

foreground detection

m two horizontal axes of asymmetry to isolate: head, torso, legs

use vertical axes of appearance symmetry for torso and legs

m extract: HSV histogram, stable colour regions, textures

B estimation of symmetry affected by deformations & pose variations:
m .. noisy features

7M. Farenzena et al.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR
(2010).



Proposed Method

m Aim to obtain a compact & robust representation of an image:

m allow for imprecise person detection

m allow for deformations

m .. do not use rigid spatial relations

m do not use brittle feature extraction based on symmetry

m Steps:

foreground estimation

for each foreground pixel, extract feature vector containing
colour and local texture information

represent the set of feature vectors as a covariance matrix

covariance matrix is a point on a Riemannian manifold

map matrix from R. manifold to vector in Euclidean space,
while taking into account curvature of the manifold!

[@ use standard machine learning for classification



Feature Extraction

m For each foreground pixel, extract feature vector:

f:[X7 Y HSnyu /\xy> eXy ]T
where

m HSV,y = [Hy, Sy, Viy] = colour values of the HSV channels

Ay =[5, )\fy,)\fy] = gradient magnitudes

m O, = [0F,05,05] = gradient orientations

m (not limited to above, can certainly use other features)

. N . .
m Given set F = {f;},_,, calculate covariance matrix:

C= i Sl i)

m low dimensional representation, independent of image size



How to Compare Covariance Matrices?

m Naive method:

m brute-force vectorisation of matrix
m use Euclidean distance between resultant vectors

m Naive method kind-of works, BUT:

m covariance matrix = symmetric positive definite (SPD) matrix

. . . . 2
space of SPD matrices = interior of a convex cone in RP

space of SPD matrices = Riemannian manifold[®!
m .. covariance matrix = point on a Riemannian manifold

® naive method disregards curvature of manifold!

geodesic distance: shortest path along the manifold
(eg. on a sphere)

8X. Pennec et al.: A Riemannian Framework for Tensor Computing. In: 1JCV 66.1 (2006).



How to Measure Distances on Riemannian Manifolds?
m Use Affine Invariant Riemannian Metric (AIRM) [9:

1 1
5r (A, B) = Hlog (B‘EAB‘E) HF
m intensive use of matrix inverses, square roots, logarithms [10]

m ... computationally demanding!

m Choose a tangent pole, and map all points to tangent space

m tangent space is Euclidean space
m faster, but less precise
m true geodesic distances are only to the tangent pole!

9X. Pennec et al.: A Riemannian Framework for Tensor Computing. In: |JCV 66.1 (2006).

10y, Arsigny et al.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. In: Magnetic
Resonance in Medicine 56.2 (2006).



Stein Divergence

m Related to AIRM, but much faster [11]
ds(A, B) = log (det (A4£58)) — 3 log (det (AB))
m divergence, not a true distance!

Proposed: Relational Divergence Classification

m Obtain a set of training covariance matrices { T}Y |
m For matrix C, calculate its Stein divergence to each training
covariance matrix:
[0s(C, T1) 0s(C, T2) --- 0s(C,Tn)] € RN
m In effect, we have mapped matrix C from manifold space to
Euclidean space, while (approximately) taking into account
manifold curvature

m Can now use standard machine learning methods

115 Sra: A new metric on the manifold of kernel matrices with application to matrix geometric means. In:
NIPS (2012).



Comparative Evaluation

m After mapping from manifold space to Euclidean space,
use LDA based classifier
m Use ETHZ dataset [1?]
m captured from a moving camera
m occlusions and wide variations in appearance

m Compare with:

m directly using the Stein divergence
m Histogram Plus Epitome (HPE) [13]
m Partial Least Squares (PLS)[*4]

m_ Symmetry-Driven Accumulation of Local Features (SDALF)[15]
127 Ess et al.: Depth and Appearance for Mobile Scene Analysis. In: ICCV (2007).

13| oris Bazzani et al.: Multiple-Shot Person Re-identification by HPE Signature. In: |CPR (2010).

14W.R. Schwartz et al.: Learning discriminative appearance-based models using partial least squares. |In:
SIBGRAPI (2009).

15\, Farenzena et al.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR
(2010).
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Part 3: Object Tracking on Manifolds

Published in:

m S. Shirazi, C. Sanderson, C. McCool, M. Harandi.
Bags of Affine Subspaces for Robust Object Tracking.
arXiv:1408.2313, 2014.

m Full paper: http://arxiv.org/pdf/1408.2313v2


http://arxiv.org/pdf/1408.2313v2

Object tracking is hard:

occlusions

deformations

variations in pose
variations in scale
variations in illumination

imposters / similar objects




Tracking algorithms can be categorised into:

generative tracking

represent object through a particular appearance model
search for image area with most similar appearance
examples: mean shift tracker [1°] and FragTrack [17]

discriminative tracking

treat tracking as binary classification task

discriminative classifier trained to explicitly separate object
from non-object areas

example: Multiple Instance Learning (MILTrack) [18]
example: Tracking-Learning-Detection (TLD) [*°]

requires larger training dataset than generative tracking

16Dorin Comaniciu et al.: Kernel-based object tracking. In: IEEE PAMI 255 (2003).

17A. Adam et al.: Robust fragments-based tracking using the integral histogram. In: |[EEE CV/PR (2006).

8B Babenko et al.: Robust object tracking with online multiple instance learning. In: |IEEE PAMI 33.8 (2011).
197 Kalal et al.: Tracking-learning-detection. In: |IEEE PAMI 34.7 (2012).



Promising approach for generative tracking:

— model object appearance via subspaces

m originated with the work of Black and Jepson [2°]
m apply eigen decomposition on a set of object images

m resulting eigen vectors define a linear subspace

m subspaces able to capture perturbations of object appearance

Ve Vv
image set subspace basis

20\ichael J Black et al.: EigenTracking: Robust matching and tracking of articulated objects using a view-based
representation. In: [JCV 26.1 (1998), pp. 63-84.



Many developments to address limitations:
m sequentially update the subspace [211[22]
m more robust update of the subspace [231[241[25]

m online updates using distances to subspaces on Grassmann
manifolds [2°]

But still not competitive with discriminative methods!

21 Danijel Skocaj et al.: Weighted and robust incremental method for subspace learning. In: ICCV/ (2003).
22Yc»ngmin Li: On incremental and robust subspace learning. |n: Pattern Recognition 37.7 (2004).

23} Ho et al.: Visual tracking using learned linear subspaces. In: |[EEE CVPR (2004).

24.Jc>ngwc>c> Lim et al.: Incremental learning for visual tracking. In: NIPS (2004).

25D.A. Ross et al.: Incremental learning for robust visual tracking. In: [JCV 77.1-3 (2008).

26T, Wang et al.: Online subspace learning on Grassmann manifold for moving object tracking in video. In:
IEEE ICASSP (2008).



Two major shortcomings in all subspace based trackers:

mean of the image set is not used

m the mean can hold useful discriminatory information!

Time

Subspace
Basis
v

search for object location is typically done using
point-to-subspace distance
m compare a candidate image area from ONE frame

against the model (multiple frames)
m easily affected by drastic appearance changes (eg. occlusions)




Point-to-subspace distance

m each image is represented as a point m previously tracked frames
m object model (subspace) is are disregarded when comparing
conceptually represented as a line candidate frames to object model

m reduces memory of the system

m can easily lead to incorrect frame selection

Object Model L
. Minimum point to
Object Model L \ subspace distance

Frame t i | I
(Candidate #1) B! Frame t
(Candidate #1)

Frame t
(Candidate #3)

3 Candidates
Frame t
(Candidate #2)

Previously Tracked Frames Previously Tracked Frames




Proposed Tracking Approach

Comprised of 4 intertwined components:

particle filtering framework (for efficient search)

model appearance of each particle as an affine subspace

m takes into account tracking history (longer memory)
m takes into account the mean

object model: bag of affine subspaces

m continuously updated set of affine subspaces
m longer memory
m handles drastic appearance changes

likelihood of each particle according to object model:

(i) distance between means
(ii) distance between bases: subspace-to-subspace distance



1. Particle Filtering Framework

m Using standard particle filtering framework [27]
m History of object’s location is parameterised as a distribution

m set of particles represents the distribution
m each particle represents a location and scale:

2 =[x, {9, 5]
m Use distribution to create a set of candidate object locations
in a new frame
m Obtain appearance of each particle: A,(-t)
m Choose new location of object as the particle with highest
likelihood according to object model 5:

2t = zJ(.t), where j = argmax p (.A,(-t)|l’>’)

VS Arulampalam et al.: A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking.
In: IEEE Trans. Signal Processing 50.2 (2002).



2. Model Appearance of Each Particle as an Affine Subspace
m Affine subspace represented as a 2-tuple:
A — {9, u®)

p:  mean
U: subspace basis

m Appearance includes:

appearance of the i-th candidate location
appearance of tracked object in several preceding frames




3. Object Model: Bag of Affine Subspaces

m Drastic appearance changes (eg. occlusions) adversely affect
subspaces
m Instead of modelling the object using only one subspace, use a
bag of subspaces:
B:{_Al’... 7~AK}
m Simple model update: the bag is updated every W frames
by replacing the oldest affine subspace with the newest

Subspace Basis

! i
I Mean |




4. Likelihood of Each Particle According to Object Model

m Particle filtering framework requires: p (Agt)\l’j’)
m Appearance of each candidate area: A" = { (®), U,(.t)}
m Object model: B={Ay, -, Ak}
m Our definition: p (Agt)|8> =35, ﬁ(ASt)\B [k])
m B[k] is the k-th affine subspace in bag B
p(A151K)

| b\(A’(t)|B[k]> = W, where N = num. of pal’tic|es

o p (AP1B1K) ~ exp { - (A, 1)

distance between affine subspaces



m Define the distance between two affine subspaces as:
dist(Aj, Aj) = a do (1, 1) + (1 — @) dg (U}, U))

= do (i, 1;) = normalised Euclidean distance between means
d

m dg (U;, Uj) = normalised geodesic distance between bases

m Grassmann manifolds:
m space of all n-dimensional linear subspaces of RP for 0<n<D

m a point on Grassmann manifold Gp , is a D x n matrix
m Geodesic distance between subspaces U; and U; is:
dg (Ui, Uj) = [|[01,02,-- -, 0]l
m [01,0o,---,0,] = vector of principal angles
m 0; = smallest angle btwn. all pairs of unit vectors in U; and U;

m principal angles are computed via SVD of U,-TUJ-



m each image set is represented as
a point on a Grassmann manifold

m explicitly takes into account
previously tracked frames

Object Model

Object Model

Frame t
(Candidate #1)

Frame t
(Candidate #3)

Minimum distance ,/
/

Candidates

Previously Tracked Frames




Computational Complexity

m Generation of new affine subspace:
m patch size: H; x H,
m represent patch as vector: D = H; x H,
m use patches from P frames
m .. SVD of D x P matrix
mD>>P
m using optimised thin SVDI?8l: © (Dn?) operations

m n = number of basis vectors

m To keep computational requirements relatively low:

m patch size: 32 x 32
m number of frames: 5
m _number of basis vectors: 3

28\atthew Brand: Fast low-rank modifications of the thin singular value decomposition. In: Linear Algebra and
its Applications 415.1 (2006).



Comparative Evaluation

m Evaluation on 8 commonly used videos in the literature
m Compared against recent tracking algorithms:

m Tracking-Learning-Detection (TLD)[?°]
m Multiple Instance Learning (MILTrack) [30]

m Sparse Collaborative Model (SCM) [31]

m Qualitative and quantitative evaluation

297 Kalal et al.: Tracking-learning-detection. In: |IEEE PAMI 34.7 (2012).
308 Babenko et al.: Robust object tracking with online multiple instance learning. In: |IEEE PAMI 33.8 (2011).
3lyyei Zhong et al.: Robust object tracking via sparsity-based collaborative model. In: IEEE CVPR (2012).



proposed method | TLD (PAMI 2012) | MiLTrack (PAMI 2011) | SCM (CVPR 2012)




Quantitative Results

m Used two measures:

centre location error: distance between the centre of the
bounding box and the ground truth object position

precision: percentage of frames where the estimated object
location is within a pre-defined distance to ground truth

40 0.9
35 08
30 0.7
25 c 0.6
5 2 05
g » § 04
g 15 I
10 02
5 01
0 )
proposed MILTrack proposed TLD MiLTrack
average error average precision
(lower = better) (higher = better)



Future Work

m Affected by motion blurring (rapid motion or pose variations)

m Better update scheme by measuring the effectiveness of new
affine subspace before adding it to the bag

m Allow bag size and update rate to be dynamic, possibly
dependent on tracking difficulty



Part 4: Related Work on
Surveillance Technologies

Overview of our papers on:

m face recognition in realistic scenarios
m shadow removal for improved object detection and tracking
m estimation of true background in cluttered surveillance videos

m face selection for improved recognition in surveillance videos



Y. Wong, M. Harandi, C. Sanderson.

On Robust Face Recognition via Sparse Coding:
The Good, The Bad and The Ugly.

IET Biometrics, Vol. 3, No. 4, 2014.

m official version: http://dx.doi.org/10.1049 /iet-bmt.2013.0033
m arXiv pre-print: http://arxiv.org/pdf/1303.1624v1

Summary:

m Shows that most face recognition systems based on sparse coding:
m rely on flawed assumptions

m are inapplicable to realistic scenarios: open-set identification
and misalignment (imperfect face detection / localisation)
m Proposes sparse coding on patch-based face representation
m results in a robust face descriptor

m robust to face misalignment & environmental variations
m readily applicable to open set identification and verification


http://dx.doi.org/10.1049/iet-bmt.2013.0033
http://arxiv.org/pdf/1303.1624v1

A. Sanin, C. Sanderson, B.C. Lovell.

Shadow Detection: A Survey and Comparative Evaluation of
Recent Methods.

Pattern Recognition, Vol. 45, No. 4, 2012.

m official version: http://dx.doi.org/10.1016/j.patcog.2011.10.001
m arXiv pre-print: http://arxiv.org/pdf/1304.1233v1
m C++ source code: http://arma.sourceforge.net/shadows/

Summary:

m Shadow removal is a critical step for improving object detection and
object tracking

m Places shadow detection algorithms in a feature-based taxonomy:
chromacity, physical, geometry and textures

m Quantitatively compares recent algorithms in terms of shadow
detection and discrimination rates, colour desaturation

m Small-region texture based method is especially robust


http://dx.doi.org/10.1016/j.patcog.2011.10.001
http://arxiv.org/pdf/1304.1233v1
http://arma.sourceforge.net/shadows/

V. Reddy, C. Sanderson, B.C. Lovell.

A Low-Complexity Algorithm for Static Background Estimation
from Cluttered Image Sequences in Surveillance Contexts.
Image and Video Processing, 2011.

m official version: http://dx.doi.org/10.1155/2011 /164956
m arXiv pre-print: http://arxiv.org/pdf/1303.2465v1
m C++ source code: http://arma.sourceforge.net/background_est/

Summary:

m True background model is unavailable in many practical
circumstances: surveillance videos cluttered with foreground objects

m Propose a sequential technique for estimation of static backgrounds
m Background is reconstructed through a Markov Random Field framework

m Image sequences are analysed on a block-by-block basis; clique
potentials are computed based on the combined frequency response
of the candidate block and its neighbourhood


http://dx.doi.org/10.1155/2011/164956
http://arxiv.org/pdf/1303.2465v1
http://arma.sourceforge.net/background_est/

Y. Wong, S. Chen, S. Mau, C. Sanderson, B.C. Lovell.
Patch-based Probabilistic Image Quality Assessment for
Face Selection and Improved Video-based Face Recognition.
IEEE Conf. Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011.
m official version: http://dx.doi.org/10.1109/CVPRW.2011.5981881
m arXiv pre-print: http://arxiv.org/pdf/1304.0869v2
m surveillance database: http://arma.sourceforge.net/chokepoint/

Summary:

m In face recognition from surveillance videos, face images are
captured over multiple frames in uncontrolled conditions

m Using all face images (including poor quality images) can degrade
face recognition performance!

m Current face selection techniques are incapable of simultaneously
handling all relevant environmental factors

m Propose an efficient patch-based face image quality assessment
algorithm which quantifies similarity of face images to a
probabilistic face model, representing an “ideal” face


http://dx.doi.org/10.1109/CVPRW.2011.5981881
http://arxiv.org/pdf/1304.0869v2
http://arma.sourceforge.net/chokepoint/

Part 5: Rethinking Approaches
to Computer Vision Research




m Adapt the main lessons learned!3?! from big data:
m more data provides more depth
m some correlations or trends are only visible in large datasets
m don't sample, use all data: sampling throws out information!

m sampling is a leftover from a bygone age: when we had lack
of storage & processing power

m Implications for computer vision algorithms:

m trade-off between amount of data that can be processed and
algorithm complexity

m better to make a fast & “imprecise” algorithm that can go
through a lot of data, instead of a slow & “precise” algorithm

m design algorithms from the start to be scalable:
parallelisable and able to process chunks of data at a time

32y, Mayer-Schonberger et al.: Big Data. John Murray Publishers, 2013.



m Algorithms are currently implemented to run on CPUs:

m stem from Von Neumann architecture (1945)
m read instruction, read data, process data, store data, ...
m good for fast processing of spreadsheets

m inefficient for computer vision: slow and uses lots of energy

m Organic brain:

m NOT Von Neumann architecture

m data is encoded and processed in terms of spikes
(eg. rate of spikes)

massively parallel execution

easily deals with incomplete data

energy efficient
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m TrueNorth: new computer architecture from IBM Research(33!:

rough approximation of the organic brain

NOT simply a hardware implementation of ANNs
implements interconnected modules of spiking neurons
implemented using existing CMOS hardware building blocks
4096 cores, 1 million neurons, 5.4 billion transistors

each core has memory (“synapses”), processors ( “neurons”),
and communication (“axons”)

33 Andrew S. Cassidy et al.: Cognitive computing building block: A versatile and efficient digital neuron model for
neurosynaptic cores. In: [JCNN (2013).



m Fundamentally different programming approach:
m composing networks of neurosynaptic cores

m Successfully implemented computer vision algorithms!34!:

m digit recognition, collision avoidance, optical flow,
eye detection, ...

m 400 billion synaptic operations per second (SOPS) per watt
m most efficient supercomputer: 4.5 billion FLOPS per watt

m uses less energy: 176,000 times more efficient than a modern
CPU running the same brain-like workload

34Steve K. Esser et al.: Cognitive computing systems: Algorithms and applications for networks of neurosynaptic
cores. In: [JCNN (2013).



m Implications:

m a paradigm shift is on the horizon

m nature of computer vision research will need to adapt
to make use of the new architecture

m How deep does the rabbit hole go?

m the organic brain already contains excellent vision
algorithms, thanks to a few billion years of evolution

m is the code used by the organic brain similar to the
code used by TrueNorth?

m if so, can we reverse engineer the pre-existing
algorithms in the brain?

m re-implement the reverse engineered algorithms on
the TrueNorth architecture?



m Questions? Comments?
e-mail: conradsand [at] ieee [dot] org

m More papers on computer vision & machine learning:
http://conradsanderson.id.au/papers.html


http://conradsanderson.id.au/papers.html

