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Part 1: Robust Foreground Detection

Published in:

V. Reddy, C. Sanderson, B.C. Lovell.
Improved Foreground Detection via Block-based Classifier
Cascade with Probabilistic Decision Integration.
IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 23, No. 1, 2013.

official version: http://dx.doi.org/10.1109/TCSVT.2012.2203199

arXiv pre-print: http://arxiv.org/pdf/1303.4160v1

C++ source code: http://arma.sourceforge.net/foreground/

Algorithm integrated into a commercial surveillance product!
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Early approaches to foreground segmentation:

obtain clear view of the background
given a frame, subtract the background
leftover pixels: foreground

Problems:
background changes with time (eg. illumination changes)
noisy ∴ clean up pixels using ad-hoc post-processing
(eg. erosion)

Common approach:
model each background location with a stochastic model
pixels with low probability: foreground
adapt model to take into account background changes
better, but still noisy, still requires ad-hoc post-processing

Core problems:
classification done at the pixel level
rich contextual information not taken into account
foreground segmentation 6= background subtraction
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Proposed Method

1 divide given image into overlapping blocks
generate low-dimensional descriptors for each block

2 classify each block into foreground/background
use a classifier cascade

3 for each pixel integrate block level decisions
results in pixel-level foreground/background segmentation
ad-hoc post-processing not necessary

4 background model re-initialisation
for scenarios with sudden and significant scene changes
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Step 1

divide given image into overlapping blocks

block size: 8× 8

generate low-dimensional descriptors for each block:

d (i ,j) =
[
c

[r ]
0 , · · · , c [r ]

3 , c
[g ]
0 , · · · , c [g ]

3 , c
[b]
0 , · · · , c [b]

3

]

c
[k]
n = n-th 2D DCT coefficient for the k-th colour {r, g, b}
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Step 2

initial classification of each block into foreground/background

use a classifier cascade

as soon as one classifier classifies as background

each stage stage analyses a block from a unique perspective:

i: texture analysis: p(d (i,j)) = N (d (i,j) | µ(i,j),Σ(i,j))

background model for each block
background model trained using a robust method, capable of using a cluttered background
background model is adapted during execution

if p(d (i,j)) > T(i,j) : classify as background

ii: shadow: if cosdist(d (i,j),µ(i,j)) < C1 : classify as background

iii: temporal correlation check: classify block as background if:

(a) d [prev]
(i,j) was classified as background, AND

(b) cosdist(d [prev]
(i,j) ,d (i,j)) ≤ C2

Conrad Sanderson - Computer Vision and Image Processing for Automated Surveillance - NICTA



Step 3

BG

FG

BG

FG

block A block B

no overlapping:
misclassification inevitable at the pixel level

with overlapping:
for each pixel, integrate initial classifications of all relevant
blocks:

P
(
fg | I(x,y)

)
=

B fg
(x,y)

Btotal
(x,y)

= num. of foreground blocks containing pixel I (x, y)
total num. of blocks containing pixel I (x, y)

classify pixel I (x , y) as foreground if P
(
fg | I(x,y)

)
≥ 0.90

no need for any ad-hoc post-processing!
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Trade-Off: Accuracy vs Speed

sliding block-by-block analysis

each block is 8×8

blocks are overlapping

1 pixel advance = max overlap

8 pixel advance = no overlap

F -measure = 2 recall·precision
recall+precision

Achieves real-time processing
at the cost of slightly reduced
accuracy (2 pixel advance)
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Comparative Evaluation

Datasets:

I2R: http://perception.i2r.a-star.edu.sg/bk model/bk index.html

Wallflower: research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm

Compare with:

GMM based [1] (with morphological post-processing)

feature histograms [2]

Normalised Vector Distances (NVD) [3] (block based approach)

Probabilistic Self-Organizing Maps (SOM) [4]

Stochastic Approximation (SA) [5]

1P. KaewTraKulPong et al.: An improved adaptive background mixture model for real-time tracking with
shadow detection. In: Proc. European Workshop Advanced Video Based Surveillance Systems (2001).

2L. Li et al.: Foreground object detection from videos containing complex background. In: Proc. International
Conference on Multimedia (2003).

3T. Matsuyama et al.: Background subtraction under varying illumination. In: Systems and Computers in
Japan 37.4 (2006).

4Ezequiel López-Rubio et al.: Foreground detection in video sequences with probabilistic self-organizing maps.
In: International Journal of Neural Systems 21.3 (2011).

5Ezequiel López-Rubio et al.: Stochastic approximation for background modelling. In: CVIU 115.6 (2011).
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original images

ground truth

GMM
(with post-processing!)

NVD

proposed method
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Quantitative evaluation on I2R dataset:
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Quantitative evaluation on Wallflower dataset:
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On average, the proposed method obtains more accurate
foreground detection

More consistent performance across various environments

Does not require any ad-hoc post-processing

Can achieve real-time processing

C++ implementation available as open source code:
http://arma.sourceforge.net/foreground/
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Part 2: Person Re-Identification

Published in:

A. Alavi, Y. Yang, M. Harandi, C. Sanderson.
Multi-Shot Person Re-Identification via Relational Stein Divergence.
IEEE International Conference on Image Processing (ICIP), 2013.

official version: http://dx.doi.org/10.1109/ICIP.2013.6738731

arXiv pre-print: http://arxiv.org/pdf/1403.0699v1
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Given images of a person from camera view 1,
find matching person from camera view 2

Difficult:

imperfect person detection / localisation
large pose changes
occlusions
illumination changes
low resolution
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Popular Previous Approaches

Partial Least Squares (PLS) based [6]

decompose an image into overlapping blocks

extracts features from each block: textures, edges, colours

concatenated into one feature vector (high dimensional)

learn discriminative dimensionality reduction for each person

classification: projection to each model + Euclidean distance

downsides:

concatenation = fixed spatial relations between blocks
∴ does not allow for movement of blocks!
∴ easily affected by imperfect localisation and pose variations

6W.R. Schwartz et al.: Learning discriminative appearance-based models using partial least squares. In:
SIBGRAPI (2009).
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Symmetry-Driven Accumulation of Local Features (SDALF)[7]

foreground detection

two horizontal axes of asymmetry to isolate: head, torso, legs

use vertical axes of appearance symmetry for torso and legs

extract: HSV histogram, stable colour regions, textures

estimation of symmetry affected by deformations & pose variations:

∴ noisy features

7M. Farenzena et al.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR
(2010).
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Proposed Method

Aim to obtain a compact & robust representation of an image:

allow for imprecise person detection
allow for deformations
∴ do not use rigid spatial relations
do not use brittle feature extraction based on symmetry

Steps:

1 foreground estimation

2 for each foreground pixel, extract feature vector containing
colour and local texture information

3 represent the set of feature vectors as a covariance matrix

4 covariance matrix is a point on a Riemannian manifold

5 map matrix from R. manifold to vector in Euclidean space,
while taking into account curvature of the manifold!

6 use standard machine learning for classification
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Feature Extraction

For each foreground pixel, extract feature vector:

f = [ x , y , HSV xy , Λxy , Θxy ]T

where

HSV xy = [Hxy ,Sxy , V̂xy ] = colour values of the HSV channels

Λxy = [λRxy , λ
G
xy , λ

B
xy ] = gradient magnitudes

Θxy = [θRxy , θ
G
xy , θ

B
xy ] = gradient orientations

(not limited to above, can certainly use other features)

Given set F = {f i}Ni=1, calculate covariance matrix:

C = 1
N−1

∑N
i=1(f i − µ)(f i − µ)T

low dimensional representation, independent of image size
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How to Compare Covariance Matrices?

Naive method:

brute-force vectorisation of matrix
use Euclidean distance between resultant vectors

Naive method kind-of works, BUT:

covariance matrix = symmetric positive definite (SPD) matrix

space of SPD matrices = interior of a convex cone in RD2

space of SPD matrices = Riemannian manifold[8]

∴ covariance matrix = point on a Riemannian manifold

naive method disregards curvature of manifold!

geodesic distance: shortest path along the manifold
(eg. on a sphere)

8X. Pennec et al.: A Riemannian Framework for Tensor Computing. In: IJCV 66.1 (2006).

Conrad Sanderson - Computer Vision and Image Processing for Automated Surveillance - NICTA



How to Measure Distances on Riemannian Manifolds?

Use Affine Invariant Riemannian Metric (AIRM) [9]:

δR (A,B) =
∥∥∥log

(
B− 1

2 AB− 1
2

)∥∥∥
F

intensive use of matrix inverses, square roots, logarithms [10]

∴ computationally demanding!

Choose a tangent pole, and map all points to tangent space

x

Y

y

Ta
ng

en
t s

pa
ce

 T
x

tangent space is Euclidean space
faster, but less precise
true geodesic distances are only to the tangent pole!

9X. Pennec et al.: A Riemannian Framework for Tensor Computing. In: IJCV 66.1 (2006).
10V. Arsigny et al.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. In: Magnetic

Resonance in Medicine 56.2 (2006).
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Stein Divergence

Related to AIRM, but much faster [11]

δS(A,B) = log
(
det
(A+B

2

))
− 1

2 log (det (AB))

divergence, not a true distance!

Proposed: Relational Divergence Classification

Obtain a set of training covariance matrices {T}Ni=1

For matrix C , calculate its Stein divergence to each training
covariance matrix:

[ δS(C ,T 1) δS(C ,T 2) · · · δS(C ,TN) ] ∈ RN

In effect, we have mapped matrix C from manifold space to
Euclidean space, while (approximately) taking into account
manifold curvature

Can now use standard machine learning methods
11S. Sra: A new metric on the manifold of kernel matrices with application to matrix geometric means. In:

NIPS (2012).
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Comparative Evaluation

After mapping from manifold space to Euclidean space,
use LDA based classifier

Use ETHZ dataset [12]

captured from a moving camera
occlusions and wide variations in appearance

Compare with:

directly using the Stein divergence

Histogram Plus Epitome (HPE) [13]

Partial Least Squares (PLS)[14]

Symmetry-Driven Accumulation of Local Features (SDALF)[15]

12A. Ess et al.: Depth and Appearance for Mobile Scene Analysis. In: ICCV (2007).
13Loris Bazzani et al.: Multiple-Shot Person Re-identification by HPE Signature. In: ICPR (2010).
14W.R. Schwartz et al.: Learning discriminative appearance-based models using partial least squares. In:

SIBGRAPI (2009).
15M. Farenzena et al.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR

(2010).
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RDC = Relational Divergence Classification (proposed method)
Stein = direct use of Stein divergence (no mapping)
HPE = Histogram Plus Epitome
PLS = Partial Least Squares

SDALF = Symmetry-Driven Accumulation of Local Features
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Part 3: Object Tracking on Manifolds

Published in:

S. Shirazi, C. Sanderson, C. McCool, M. Harandi.
Bags of Affine Subspaces for Robust Object Tracking.
arXiv:1408.2313, 2014.

Full paper: http://arxiv.org/pdf/1408.2313v2

Conrad Sanderson - Computer Vision and Image Processing for Automated Surveillance - NICTA

http://arxiv.org/pdf/1408.2313v2


Object tracking is hard:

occlusions

deformations

variations in pose

variations in scale

variations in illumination

imposters / similar objects

Conrad Sanderson - Computer Vision and Image Processing for Automated Surveillance - NICTA



Tracking algorithms can be categorised into:

1 generative tracking

represent object through a particular appearance model
search for image area with most similar appearance
examples: mean shift tracker [16] and FragTrack [17]

2 discriminative tracking

treat tracking as binary classification task
discriminative classifier trained to explicitly separate object
from non-object areas
example: Multiple Instance Learning (MILTrack) [18]

example: Tracking-Learning-Detection (TLD) [19]

requires larger training dataset than generative tracking

16Dorin Comaniciu et al.: Kernel-based object tracking. In: IEEE PAMI 25.5 (2003).
17A. Adam et al.: Robust fragments-based tracking using the integral histogram. In: IEEE CVPR (2006).
18B. Babenko et al.: Robust object tracking with online multiple instance learning. In: IEEE PAMI 33.8 (2011).
19Z. Kalal et al.: Tracking-learning-detection. In: IEEE PAMI 34.7 (2012).
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Promising approach for generative tracking:

→ model object appearance via subspaces

originated with the work of Black and Jepson [20]

apply eigen decomposition on a set of object images

resulting eigen vectors define a linear subspace

subspaces able to capture perturbations of object appearance

︸ ︷︷ ︸
image set

→ ︸ ︷︷ ︸
subspace basis

20Michael J Black et al.: EigenTracking: Robust matching and tracking of articulated objects using a view-based
representation. In: IJCV 26.1 (1998), pp. 63–84.
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Many developments to address limitations:

sequentially update the subspace [21][22]

more robust update of the subspace [23][24][25]

online updates using distances to subspaces on Grassmann
manifolds [26]

But still not competitive with discriminative methods!

21Danijel Skocaj et al.: Weighted and robust incremental method for subspace learning. In: ICCV (2003).
22Yongmin Li: On incremental and robust subspace learning. In: Pattern Recognition 37.7 (2004).
23J. Ho et al.: Visual tracking using learned linear subspaces. In: IEEE CVPR (2004).
24Jongwoo Lim et al.: Incremental learning for visual tracking. In: NIPS (2004).
25D.A. Ross et al.: Incremental learning for robust visual tracking. In: IJCV 77.1-3 (2008).
26T. Wang et al.: Online subspace learning on Grassmann manifold for moving object tracking in video. In:

IEEE ICASSP (2008).
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Two major shortcomings in all subspace based trackers:

1 mean of the image set is not used

the mean can hold useful discriminatory information!
Time

Mean

Subspace 
Basis

µ 

U

2 search for object location is typically done using
point-to-subspace distance

compare a candidate image area from ONE frame
against the model (multiple frames)
easily affected by drastic appearance changes (eg. occlusions)
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Point-to-subspace distance
each image is represented as a point

object model (subspace) is
conceptually represented as a line

Frame 1

Frame 2

Frame 3

Frame t-2

Frame t-1

Frame t 

(Candidate #1)

Frame t 

(Candidate #2)

Frame t 

(Candidate #3)

Object Model

Previously Tracked Frames

Candidates

previously tracked frames
are disregarded when comparing
candidate frames to object model

reduces memory of the system

can easily lead to incorrect frame selection

Frame 1

Frame 2

Frame 3

Frame t-2

Frame t-1

Frame t 

(Candidate #1)

Frame t 

(Candidate #2)

Frame t 

(Candidate #3)

Object Model

Previously Tracked Frames

Candidates

Minimum point to 

subspace distance
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Proposed Tracking Approach

Comprised of 4 intertwined components:

1 particle filtering framework (for efficient search)

2 model appearance of each particle as an affine subspace

takes into account tracking history (longer memory)
takes into account the mean

3 object model: bag of affine subspaces

continuously updated set of affine subspaces
longer memory
handles drastic appearance changes

4 likelihood of each particle according to object model:

(i) distance between means
(ii) distance between bases: subspace-to-subspace distance
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1. Particle Filtering Framework

Using standard particle filtering framework [27]

History of object’s location is parameterised as a distribution

set of particles represents the distribution
each particle represents a location and scale:

z (t)
i = [x

(t)
i , y

(t)
i , s

(t)
i ]

Use distribution to create a set of candidate object locations
in a new frame

Obtain appearance of each particle: A(t)
i

Choose new location of object as the particle with highest
likelihood according to object model B:

z (t)
∗ = z (t)

j , where j = argmax
i

p
(
A(t)

i |B
)

27M.S. Arulampalam et al.: A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking.
In: IEEE Trans. Signal Processing 50.2 (2002).
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2. Model Appearance of Each Particle as an Affine Subspace

Affine subspace represented as a 2-tuple:

A(t)
i =

{
µ

(t)
i ,U(t)

i

}
µ: mean
U : subspace basis

Time

Mean

Subspace 
Basis

µ 

U

Appearance includes:

1 appearance of the i-th candidate location
2 appearance of tracked object in several preceding frames
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3. Object Model: Bag of Affine Subspaces

Drastic appearance changes (eg. occlusions) adversely affect
subspaces
Instead of modelling the object using only one subspace, use a
bag of subspaces:

B = {A1, · · · ,AK}
Simple model update: the bag is updated every W frames
by replacing the oldest affine subspace with the newest
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4. Likelihood of Each Particle According to Object Model

Particle filtering framework requires: p
(
A(t)

i |B
)

Appearance of each candidate area: A(t)
i =

{
µ

(t)
i ,U(t)

i

}
Object model: B = {A1, · · · ,AK}

Our definition: p
(
A(t)

i |B
)

=
∑K

k=1 p̂
(
A(t)

i |B [k]
)

B [k] is the k-th affine subspace in bag B

p̂
(
A(t)

i |B[k]
)

=
p
(
A(t)

i |B[k]
)

∑N
j=1 p

(
A(t)

j |B[k]
) , where N = num. of particles

p
(
A(t)

i |B[k]
)
≈ exp

{
− dist(A(t)

i ,B[k])︸ ︷︷ ︸
}

distance between affine subspaces
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Define the distance between two affine subspaces as:

dist(Ai ,Aj) = α d̂o

(
µi ,µj

)
+ (1− α) d̂g (U i ,U j)

d̂o

(
µi ,µj

)
= normalised Euclidean distance between means

d̂g (U i ,U j) = normalised geodesic distance between bases

Grassmann manifolds:

space of all n-dimensional linear subspaces of RD for 0<n<D

a point on Grassmann manifold GD,n is a D × n matrix

Geodesic distance between subspaces U i and U j is:

dg (U i ,U j) = ‖[θ1, θ2, · · · , θn]‖

[θ1, θ2, · · · , θn] = vector of principal angles

θ1 = smallest angle btwn. all pairs of unit vectors in U i and U j

principal angles are computed via SVD of UT
i U j
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each image set is represented as
a point on a Grassmann manifold

explicitly takes into account
previously tracked frames

Minimum  distance

Object Model
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Computational Complexity

Generation of new affine subspace:

patch size: H1 × H2

represent patch as vector: D = H1 × H2

use patches from P frames

∴ SVD of D × P matrix

D >> P

using optimised thin SVD[28]: O
(
Dn2

)
operations

n = number of basis vectors

To keep computational requirements relatively low:

patch size: 32× 32
number of frames: 5
number of basis vectors: 3

28Matthew Brand: Fast low-rank modifications of the thin singular value decomposition. In: Linear Algebra and
its Applications 415.1 (2006).

Conrad Sanderson - Computer Vision and Image Processing for Automated Surveillance - NICTA



Comparative Evaluation

Evaluation on 8 commonly used videos in the literature

Compared against recent tracking algorithms:

Tracking-Learning-Detection (TLD)[29]

Multiple Instance Learning (MILTrack) [30]

Sparse Collaborative Model (SCM) [31]

Qualitative and quantitative evaluation

29Z. Kalal et al.: Tracking-learning-detection. In: IEEE PAMI 34.7 (2012).
30B. Babenko et al.: Robust object tracking with online multiple instance learning. In: IEEE PAMI 33.8 (2011).
31Wei Zhong et al.: Robust object tracking via sparsity-based collaborative model. In: IEEE CVPR (2012).
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proposed method TLD (PAMI 2012) MILTrack (PAMI 2011) SCM (CVPR 2012)
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Quantitative Results

Used two measures:

1 centre location error: distance between the centre of the
bounding box and the ground truth object position

2 precision: percentage of frames where the estimated object
location is within a pre-defined distance to ground truth

proposed TLD MILTrack SCM OAB IVT
0

5

10

15

20

25

30

35

40

m
e
a
n

e
rr
o
r

average error
(lower = better)

proposed TLD MILTrack SCM OAB IVT
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
e
a
n

p
re

ci
si

o
n

average precision
(higher = better)

Conrad Sanderson - Computer Vision and Image Processing for Automated Surveillance - NICTA



Future Work

Affected by motion blurring (rapid motion or pose variations)

Better update scheme by measuring the effectiveness of new
affine subspace before adding it to the bag

Allow bag size and update rate to be dynamic, possibly
dependent on tracking difficulty
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Part 4: Related Work on
Surveillance Technologies

Overview of our papers on:

face recognition in realistic scenarios

shadow removal for improved object detection and tracking

estimation of true background in cluttered surveillance videos

face selection for improved recognition in surveillance videos
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Y. Wong, M. Harandi, C. Sanderson.
On Robust Face Recognition via Sparse Coding:
The Good, The Bad and The Ugly.
IET Biometrics, Vol. 3, No. 4, 2014.

official version: http://dx.doi.org/10.1049/iet-bmt.2013.0033

arXiv pre-print: http://arxiv.org/pdf/1303.1624v1

Summary:

Shows that most face recognition systems based on sparse coding:
rely on flawed assumptions
are inapplicable to realistic scenarios: open-set identification
and misalignment (imperfect face detection / localisation)

Proposes sparse coding on patch-based face representation

results in a robust face descriptor
robust to face misalignment & environmental variations
readily applicable to open set identification and verification
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A. Sanin, C. Sanderson, B.C. Lovell.
Shadow Detection: A Survey and Comparative Evaluation of
Recent Methods.
Pattern Recognition, Vol. 45, No. 4, 2012.

official version: http://dx.doi.org/10.1016/j.patcog.2011.10.001

arXiv pre-print: http://arxiv.org/pdf/1304.1233v1

C++ source code: http://arma.sourceforge.net/shadows/

Summary:

Shadow removal is a critical step for improving object detection and
object tracking

Places shadow detection algorithms in a feature-based taxonomy:
chromacity, physical, geometry and textures

Quantitatively compares recent algorithms in terms of shadow
detection and discrimination rates, colour desaturation

Small-region texture based method is especially robust
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V. Reddy, C. Sanderson, B.C. Lovell.
A Low-Complexity Algorithm for Static Background Estimation
from Cluttered Image Sequences in Surveillance Contexts.
Image and Video Processing, 2011.

official version: http://dx.doi.org/10.1155/2011/164956

arXiv pre-print: http://arxiv.org/pdf/1303.2465v1

C++ source code: http://arma.sourceforge.net/background est/

Summary:

True background model is unavailable in many practical
circumstances: surveillance videos cluttered with foreground objects

Propose a sequential technique for estimation of static backgrounds

Background is reconstructed through a Markov Random Field framework

Image sequences are analysed on a block-by-block basis; clique
potentials are computed based on the combined frequency response
of the candidate block and its neighbourhood
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Y. Wong, S. Chen, S. Mau, C. Sanderson, B.C. Lovell.
Patch-based Probabilistic Image Quality Assessment for
Face Selection and Improved Video-based Face Recognition.
IEEE Conf. Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011.

official version: http://dx.doi.org/10.1109/CVPRW.2011.5981881
arXiv pre-print: http://arxiv.org/pdf/1304.0869v2
surveillance database: http://arma.sourceforge.net/chokepoint/

Summary:

In face recognition from surveillance videos, face images are
captured over multiple frames in uncontrolled conditions

Using all face images (including poor quality images) can degrade
face recognition performance!

Current face selection techniques are incapable of simultaneously
handling all relevant environmental factors

Propose an efficient patch-based face image quality assessment
algorithm which quantifies similarity of face images to a
probabilistic face model, representing an “ideal” face
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Part 5: Rethinking Approaches
to Computer Vision Research
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Adapt the main lessons learned[32] from big data:

more data provides more depth

some correlations or trends are only visible in large datasets

don’t sample, use all data: sampling throws out information!

sampling is a leftover from a bygone age: when we had lack
of storage & processing power

Implications for computer vision algorithms:

trade-off between amount of data that can be processed and
algorithm complexity

better to make a fast & “imprecise” algorithm that can go
through a lot of data, instead of a slow&“precise” algorithm

design algorithms from the start to be scalable:
parallelisable and able to process chunks of data at a time

32V. Mayer-Schönberger et al.: Big Data. John Murray Publishers, 2013.
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Algorithms are currently implemented to run on CPUs:

stem from Von Neumann architecture (1945)

read instruction, read data, process data, store data, ...

good for fast processing of spreadsheets

inefficient for computer vision: slow and uses lots of energy

Organic brain:

NOT Von Neumann architecture

data is encoded and processed in terms of spikes
(eg. rate of spikes)

massively parallel execution

easily deals with incomplete data

energy efficient
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CPU→

vs

Brain→

∴ CPUs use lots of energy, get hot, and don’t accomplish much ...
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TrueNorth: new computer architecture from IBM Research[33]:

rough approximation of the organic brain

NOT simply a hardware implementation of ANNs

implements interconnected modules of spiking neurons

implemented using existing CMOS hardware building blocks

4096 cores, 1 million neurons, 5.4 billion transistors

each core has memory (“synapses”), processors (“neurons”),
and communication (“axons”)

Network

neurons

axons

dendrites synaptic
crossbar

neurosynaptic core

Buffer

Buffer

Buffer

PRNG

Buffer

33Andrew S. Cassidy et al.: Cognitive computing building block: A versatile and efficient digital neuron model for
neurosynaptic cores. In: IJCNN (2013).
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Fundamentally different programming approach:

composing networks of neurosynaptic cores
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Successfully implemented computer vision algorithms[34]:

digit recognition, collision avoidance, optical flow,
eye detection, ...

400 billion synaptic operations per second (SOPS) per watt

most efficient supercomputer: 4.5 billion FLOPS per watt

uses less energy: 176,000 times more efficient than a modern
CPU running the same brain-like workload

34Steve K. Esser et al.: Cognitive computing systems: Algorithms and applications for networks of neurosynaptic
cores. In: IJCNN (2013).
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Implications:

a paradigm shift is on the horizon

nature of computer vision research will need to adapt
to make use of the new architecture

How deep does the rabbit hole go?

the organic brain already contains excellent vision
algorithms, thanks to a few billion years of evolution

is the code used by the organic brain similar to the
code used by TrueNorth?

if so, can we reverse engineer the pre-existing
algorithms in the brain?

re-implement the reverse engineered algorithms on
the TrueNorth architecture?
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Questions? Comments?
e-mail: conradsand [at] ieee [dot] org

More papers on computer vision & machine learning:
http://conradsanderson.id.au/papers.html
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