# **Dynamic Tracking Attention Model for Action Recognition**

Chien-Yao Wang<sup>1</sup>, Chin-Chin Chiang<sup>1</sup>, Jia-Ching Wang<sup>1</sup>, and Jian-Jiun Ding<sup>2</sup> <sup>1</sup>Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan, R.O.C. <sup>2</sup>Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.



# 1. Major Contribution

- The dynamic tracking attention model (DTAM), which comprises a convolutional neural network (CNN) and the long short-term memory (LSTM), is proposed.
- ✓ The proposed DTAM is to perform motion recognition from videos. It effectively fetches information between consecutive frames in a sequence .
- ✓ The recognition rate of the proposed algorithm is 3.6% and 4.5% higher than that of the CNN-LSTMs with and without the attention model, respectively

# 2. Existing Methods

- 3D scale-invariant feature transform (SIFT)
- 3D histogram of the oriented gradient (HOG )
- Speed up robust features (SURF)
- local binary patterns (LBP)
- RNN
- CNN-LSTM

# 3. Proposed Method

Dynamic tracking attention model (DTAM), It not only considers the information about motion but also perform dynamic tracking of objects in videos.



Overview of proposed action recognition system

#### LSTM LSTM LSTM - LSTM LSTM LSTM LSTM LSTM LSTM x x x Motion attention Optical flow Optical flow Optical flow x x x CNN CNN CNN Frame Frame

4. Applied Techniques



(a) Sequential (b) Optical flow RGB images. images.

Optical flow (c) Pseudo colorized images. optical flow image.

### Optical flow image



 (a) RGB image.
(b) Optical flow with only local dynamic tracking.

flow (c) Optical flow ocal with local and c global dynamic g. tracking.

Dynamic tracking of the optical flow

Global dynamic tracking can estimate the motion of the camera and correct the weights of the motion attention model.

### **Adjustment of DTAM**

$$flow_{t,d,i} = \left| \mathbf{I}_{t,d,m}^{flow} - 128 \right|, \quad d = 1, 2, ..., D$$
$$a_{t,m}^{flow} = \sum_{d=1}^{D} \frac{flow_{t,d,m} - \min(flow_{t,d})}{D \times (\max(flow_{t,d}) - \min(flow_{t,d}))}$$

where  $\mathbf{X}_{tm}$  is the feature cuboid.

Comparison of DTAM with/without adjustment

 $\mathbf{x}_{t}^{flow} = \sum_{m=1}^{K^{2}} a_{t,m}^{flow} \mathbf{X}_{t,m}$ 

5. Simulation Results

The UCF-11 dataset contains 1599 videos with 11 classes of

| Motion attention | Recognition rate |
|------------------|------------------|
| optical flow     | 83.83%           |
| DTAM             | 90.12%           |

### Classifications by the proposed attention model

| Class               | Recognition result |        |         |
|---------------------|--------------------|--------|---------|
|                     | Visual             | Motion | Overall |
| Riding bike         | 100%               | 81.8%  | 95.5%   |
| Diving              | 94.3%              | 97.1%  | 94.3%   |
| Golfing             | 97%                | 97%    | 97%     |
| Playing football    | 96.7%              | 96.7%  | 96.7%   |
| High jumping        | 82.4%              | 97.1%  | 94.1%   |
| Riding horse        | 96%                | 96%    | 98%     |
| Basketball shooting | 57.6%              | 72.7%  | 75.8%   |
| Playing volleyball  | 96%                | 96%    | 96%     |
| Swing               | 73.3%              | 83.3%  | 80%     |
| Playing tennis      | 81.8%              | 72.7%  | 77.3%   |
| Walking dog         | 90%                | 90%    | 90%     |

Results of action recognition obtained using the hybrid attention model with different weights.

| Architecture                   | Recognition rate |
|--------------------------------|------------------|
| LSTM                           | 86.52%           |
| Visual attention model<br>[28] | 87.72%           |
| Proposed DTAM                  | 90.12%           |
| Overall (2:1)                  | 88.92%           |
| Overall (1:1)                  | 90.12%           |
| Overall (1:2)                  | 91.02%           |

## 6. Conclusion

This paper proposed a deep-learning action recognition system that is based on the CNN and the LSTM. It dynamically tracks moving objects based on information about motion that is extracted from the optical flow.