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Object tracking is hard:

occlusions

deformations

variations in pose
variations in scale
variations in illumination

imposters / similar objects




Tracking algorithms can be categorised into:

generative tracking

m represent object through a particular appearance model
m search for image area with most similar appearance
m examples: mean shift tracker [ and FragTrack [2]

discriminative tracking

m treat tracking as binary classification task

m discriminative classifier trained to explicitly separate object
from non-object areas

m example: Multiple Instance Learning (MILTrack) [3]

m example: Tracking-Learning-Detection (TLD) [4]

m requires larger training dataset than generative tracking

1Dorin Comaniciu et al.: Kernel-based object tracking. In: IEEE PAMI 255 (2003).

2A. Adam et al.: Robust fragments-based tracking using the integral histogram. In: |[EEE CV/PR (2006).

3B. Babenko et al.: Robust object tracking with online multiple instance learning. In: |IEEE PAMI 33.8 (2011).
4Z. Kalal et al.: Tracking-learning-detection. In: |IEEE PAMI 34.7 (2012).



Promising approach for generative tracking:

— model object appearance via subspaces

m originated with the work of Black and Jepson [®]
m apply eigen decomposition on a set of object images

m resulting eigen vectors define a linear subspace

m subspaces able to capture perturbations of object appearance

Ve Vv
image set subspace basis

5Michael J Black et al.: EigenTracking: Robust matching and tracking of articulated objects using a view-based
representation. In: [JCV 26.1 (1998), pp. 63-84.



Many developments to address limitations:

m sequentially update the subspace [617]
m more robust update of the subspace [81(91(10]

m online updates using distances to subspaces on Grassmann
manifolds [11]

But still not competitive with discriminative methods!

6Danije\ Skocaj et al.: Weighted and robust incremental method for subspace learning. In: |CCV/ (2003).
7Y(:»ngmin Li: On incremental and robust subspace learning. |n: Pattern Recognition 37.7 (2004).

8). Ho et al.: Visual tracking using learned linear subspaces. In: |[EEE CVPR (2004).

9Jc>ngwc>c> Lim et al.: Incremental learning for visual tracking. In: NIPS (2004).
10D A. Ross et al.: Incremental learning for robust visual tracking. In: [JCV 77.1-3 (2008).

1T, Wang et al.: Online subspace learning on Grassmann manifold for moving object tracking in video. In:
IEEE ICASSP (2008).



Two major shortcomings in all subspace based trackers:

mean of the image set is not used

m the mean can hold useful discriminatory information!

Time

Subspace
Basis
v

search for object location is typically done using
point-to-subspace distance
m compare a candidate image area from ONE frame

against the model (multiple frames)
m easily affected by drastic appearance changes (eg. occlusions)




Point-to-subspace distance

m each image is represented as a point m previously tracked frames
m object model (subspace) is are disregarded when comparing
conceptually represented as a line candidate frames to object model

m reduces memory of the system

m can easily lead to incorrect frame selection
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Proposed Tracking Approach

Comprised of 4 intertwined components:

particle filtering framework (for efficient search)

model appearance of each particle as an affine subspace

m takes into account tracking history (longer memory)
m takes into account the mean

object model: bag of affine subspaces

m continuously updated set of affine subspaces
m longer memory
m handles drastic appearance changes

likelihood of each particle according to object model:

(i) distance between means
(ii) distance between bases: subspace-to-subspace distance



1. Particle Filtering Framework

m Using standard particle filtering framework [12]
m History of object’s location is parameterised as a distribution

m set of particles represents the distribution
m each particle represents a location and scale:

2 =[x, {9, 5]
m Use distribution to create a set of candidate object locations
in a new frame
m Obtain appearance of each particle: A,(-t)
m Choose new location of object as the particle with highest
likelihood according to object model 5:

2t = zJ(.t), where j = argmax p (.A,(-t)|l’>’)

12\s. Arulampalam et al.: A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking.
In: IEEE Trans. Signal Processing 50.2 (2002).



2. Model Appearance of Each Particle as an Affine Subspace
m Affine subspace represented as a 2-tuple:
A — {9, u®)

p:  mean
U: subspace basis

m Appearance includes:

appearance of the i-th candidate location
appearance of tracked object in several preceding frames




3. Object Model: Bag of Affine Subspaces

m Drastic appearance changes (eg. occlusions) adversely affect
subspaces
m Instead of modelling the object using only one subspace, use a
bag of subspaces:
B:{_Al’... 7~AK}
m Simple model update: the bag is updated every W frames
by replacing the oldest affine subspace with the newest
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4. Likelihood of Each Particle According to Object Model

m Particle filtering framework requires: p (Agt)\l’j’)
m Appearance of each candidate area: A" = { (®), U,(.t)}
m Object model: B={Ay, -, Ak}
m Our definition: p (Agt)|8> =35, ﬁ(ASt)\B [k])
m B[k] is the k-th affine subspace in bag B
p(A151K)

| b\(A’(t)|B[k]> = W, where N = num. of pal’tic|es

o p (AP1B1K) ~ exp { - (A, 1)

distance between affine subspaces



m Define the distance between two affine subspaces as:
dist(Aj, Aj) = a do (1, 1) + (1 — @) dg (U}, U))

= do (i, 1;) = normalised Euclidean distance between means
d

m dg (U;, Uj) = normalised geodesic distance between bases

m Grassmann manifolds:
m space of all n-dimensional linear subspaces of RP for 0<n<D

m a point on Grassmann manifold Gp , in a D X n matrix
m Geodesic distance between subspaces U; and U; is:
dg (Ui, Uj) = [|[01,02,-- -, 0]l
m [01,0o,---,0,] = vector of principal angles
m 0; = smallest angle btwn. all pairs of unit vectors in U; and U;

m principal angles are computed via SVD of U,-TUJ-



m each image set is represented as
a point on a Grassmann manifold

m explicitly takes into account
previously tracked frames
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Computational Complexity

m Generation of new affine subspace:
m patch size: H; x H,
m represent patch as vector: D = H; x H,
m use patches from P frames
m .. SVD of D x P matrix
mD>>P
m using optimised thin SVD[®3l: © (Dn?) operations

m n = number of basis vectors

m To keep computational requirements relatively low:

m patch size: 32 x 32
m number of frames: 5
m _number of basis vectors: 3

B3 Matthew Brand: Fast low-rank modifications of the thin singular value decomposition. In: Linear Algebra and
its Applications 415.1 (2006).



Comparative Evaluation

m Evaluation on 8 commonly used videos in the literature
m Compared against recent tracking algorithms:

m Tracking-Learning-Detection (TLD)[4]
m Multiple Instance Learning (MILTrack) [1%]

m Sparse Collaborative Model (SCM) [10]

m Qualitative and quantitative evaluation

147 Kalal et al.: Tracking-learning-detection. In: |IEEE PAMI 34.7 (2012).
15B. Babenko et al.: Robust object tracking with online multiple instance learning. In: |IEEE PAMI 33.8 (2011).
16\yej Zhong et al.: Robust object tracking via sparsity-based collaborative model. In: IEEE CVPR (2012).



proposed method | TLD (PAMI 2012) | MiLTrack (PAMI 2011) | SCM (CVPR 2012)




Quantitative Results

m Used two measures:

centre location error: distance between the centre of the
bounding box and the ground truth object position

precision: percentage of frames where the estimated object
location is within a pre-defined distance to ground truth
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Future Work

m Affected by motion blurring (rapid motion or pose variations)

m Better update scheme by measuring the effectiveness of new
affine subspace before adding it to the bag

m Allow bag size and update rate to be dynamic, possibly
dependent on tracking difficulty



Part 2: Person Re-ldentification on Manifolds
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m Given images of a person from camera view 1,
find matching person from camera view 2

m Difficult:

imperfect person detection / localisation
large pose changes

occlusions

illumination changes

low resolution



Popular Previous Approaches

Partial Least Squares (PLS) based [17]

decompose an image into overlapping blocks

extracts features from each block: textures, edges, colours
concatenated into one feature vector (high dimensional)
learn discriminative dimensionality reduction for each person
classification: projection to each model + Euclidean distance

downsides:

m concatenation = fixed spatial relations between blocks
m . does not allow for movement of blocks!
m .. easily affected by imperfect localisation and pose variations

1TW.R. Schwartz et al.: Learning discriminative appearance-based models using partial least squares. |In:
SIBGRAPI (2009).



Symmetry-Driven Accumulation of Local Features (SDALF)['8]

foreground detection

m two horizontal axes of asymmetry to isolate: head, torso, legs

use vertical axes of appearance symmetry for torso and legs

m extract: HSV histogram, stable colour regions, textures

B estimation of symmetry affected by deformations & pose variations:
m .. noisy features

18\, Farenzena et al.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR
(2010).



Proposed Method

m Aim to obtain a compact & robust representation of an image:

m allow for imprecise person detection

m allow for deformations

m .. do not use rigid spatial relations

m do not use brittle feature extraction based on symmetry

m Steps:

foreground estimation

for each foreground pixel, extract feature vector containing
colour and local texture information

represent the set of feature vectors as a covariance matrix

covariance matrix is a point on a Riemannian manifold

map matrix from R. manifold to vector in Euclidean space,
while taking into account curvature of the manifold!

[@ use standard machine learning for classification



Feature Extraction

m For each foreground pixel, extract feature vector:

f:[X7 Y HSnyu /\xy> eXy ]T
where

m HSV,y = [Hy, Sy, Viy] = colour values of the HSV channels

Ay =[5, )\fy,)\fy] = gradient magnitudes

m O, = [0F,05,05] = gradient orientations

m (not limited to above, can certainly use other features)

. N . .
m Given set F = {f;},_,, calculate covariance matrix:

C= i Sl i)

m low dimensional representation, independent of image size



How to Compare Covariance Matrices?

m Naive method:

m brute-force vectorisation of matrix
m use Euclidean distance between resultant vectors

m Naive method kind-of works, BUT:

m covariance matrix = symmetric positive definite (SPD) matrix

. . . . 2
space of SPD matrices = interior of a convex cone in RP

space of SPD matrices = Riemannian manifold(*°]
m .. covariance matrix = point on a Riemannian manifold

® naive method disregards curvature of manifold!

geodesic distance: shortest path along the manifold
(eg. on a sphere)

19X Pennec et al.: A Riemannian Framework for Tensor Computing. In: 1JCV/ 66.1 (2006).



How to Measure Distances on Riemannian Manifolds?
m Use Affine Invariant Riemannian Metric (AIRM) [20]:

1 1
5r (A, B) = Hlog (B‘EAB‘E) HF
m intensive use of matrix inverses, square roots, logarithms [21]

m ... computationally demanding!

m Choose a tangent pole, and map all points to tangent space

m tangent space is Euclidean space
m faster, but less precise
m true geodesic distances are only to the tangent pole!

20X Pennec et al.: A Riemannian Framework for Tensor Computing. In: |JCV 66.1 (2006).

Ay, Arsigny et al.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. In: Magnetic
Resonance in Medicine 56.2 (2006).



Stein Divergence
Related to AIRM, but much faster [22]
6s(A, B) = log (det (A58)) — 3 log (det (AB))

divergence, not a true distance!

Proposed: Relational Divergence Classification

Obtain a set of training covariance matrices { T}V

For matrix C, calculate its Stein divergence to each training
covariance matrix:

[ 55(C, Tl) 55(C, T2) 55(C, T/\/) ] € RN
In effect, we have mapped matrix C from manifold space to
Euclidean space, while taking into account manifold curvature

Can now use standard machine learning methods

225 Sra: A new metric on the manifold of kernel matrices with application to matrix geometric means. In:
NIPS (2012).



Comparative Evaluation

m After mapping from manifold space to Euclidean space,
use LDA based classifier
m Use ETHZ dataset [23!
m captured from a moving camera
m occlusions and wide variations in appearance

m Compare with:

m directly using the Stein divergence
m Histogram Plus Epitome (HPE) [24]
m Partial Least Squares (PLS)[?°

m_ Symmetry-Driven Accumulation of Local Features (SDALF)[26]
A, Ess et al.: Depth and Appearance for Mobile Scene Analysis. In: ICCV (2007).

24| oris Bazzani et al.: Multiple-Shot Person Re-identification by HPE Signature. In: |CPR (2010).

BW.R. Schwartz et al.: Learning discriminative appearance-based models using partial least squares. |In:
SIBGRAPI (2009).

26\, Farenzena et al.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR
(2010).
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® Questions?
e-mail: conrad.sanderson [at] nicta.com.au

m More papers on machine learning & computer vision using manifolds:
http://conradsanderson.id.au/papers.html
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