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• A multi-stream framework with DNN classifiers  to improve 

ASR performance in various reverberant environments 

• Combination strategy is the crucial issue

• neural network posterior probability combination

• frame-wise stream merging

• higher weights to more reliable streams

• To determine the stream-specific weights

• Inverse entropy (InvEnt) [1]

• Autoencoders (AEnc) [2]

• ROom Parameter Estimator (ROPE) model
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•  the mth DNN posterior probability matrix at the

HMM state s and time frame t

•  the combination weight for mth DNN stream at

time frame t

• stream weighting:

• winner-takes-all:

• utterance-based mode: temporal averaging

• Distribution analysis of the posteriors (unsupervised)

• Weight  inverse entropy value
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METHODS

Inverse Entropy (InvEnt)

• Train an autoencoder to learn the posterior distribution

(supervised)

• Weight  inverse reconstruction error square value

Autoencoders (AEnc)

• ROPE output posteriors correlate with the relative 

performances between all DNN streams (supervised) [3]

• Weight MLP posterior probabilities

ROom Parameter Estimator (ROPE)
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CONCLUSIONS

• ROPE: new method to determine stream weights for combination of DNN posterior 

probabilities in a multi-stream DNN/HMM framework

• Outperforming InvEnt (46% relative) and AEnc (29% relative) in known and unknown 

reverberant scenarios for stream weighting or selection

• Stable results independently of (weighting or winner-takes-all) & (frame-wise vs. 

utterance-level)  real-time ASR

EXPERIMENTAL SETUP
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RESULTS & DISCUSSION

• ASR setup based on the REVERB Challenge DNN/HMM 

framework in Kaldi [4]

• 7861 utterances for training, 1088 for each test set

• No additive noises

• FBANK for ASR DNN

• Context-dependent triphone states  posteriors
-4-2024681012141618
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• M = 8 expert streams: clean- and multi-condition,                  

6 specific conditions (r1n, r1f, r2n, r2f, r3n, r3f)

• Set A: clean test and the chosen 6 matched conditions

• Set B: 6 mild, 2 moderate, 2 severe mismatched conditions

2 moderate ’inner’

6 mild

6 matched

ROPE

AEnc

InvEnt

• Equal weights  mediocre results

• In general, AEnc better than InvEnt and 

‘Frame’ better than ‘Utt’

• ROPE  lowest and consistent WERs

• InvEnt & AEnc: independent frame 

processing  isolated noisy frames, 

severely affecting Utt-Max

• ROPE: some temporal smoothing due to 

the spliced input features (11 frames)
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winner-takes-all and stream weighting

Train \ Test Set A Set B: (mild) (moderate) (severe) Avg.

Clean-cond. 31.43 32.29 29.62 57.23 34.55

Multi-cond. 8.40 8.60 7.92 13.62 9.03

Equal weights 13.61 14.76 12.43 33.18 16.18

InvEnt Frame-Weight 11.52 12.31 10.06 28.15 13.58

AEnc Frame-Max 9.27 9.79 8.97 18.46 10.50

ROPE Frame-Max 7.04 8.72 8.06 14.41 8.62
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one speech utterance from ‘r1f’
• ROPE > AEnc > InvEnt > Equal weights

• Multi-cond. here is a very strong baseline

• generalization with 44 RIRs

• Multi-stream system with ROPE still 

provides comparable results to multi-cond.

• outperforms multi-cond. in matched 

test Set A

• multi-cond. advantageous for unseen 

highly reverberant conditions

• More investigation into multi-stream system 

is required!!!

• One example to inspect the obtained frame-

wise combination weights

• ROPE provides consistently higher and far 

less noisy estimates than InvEnt and AEnc

frame prob.


