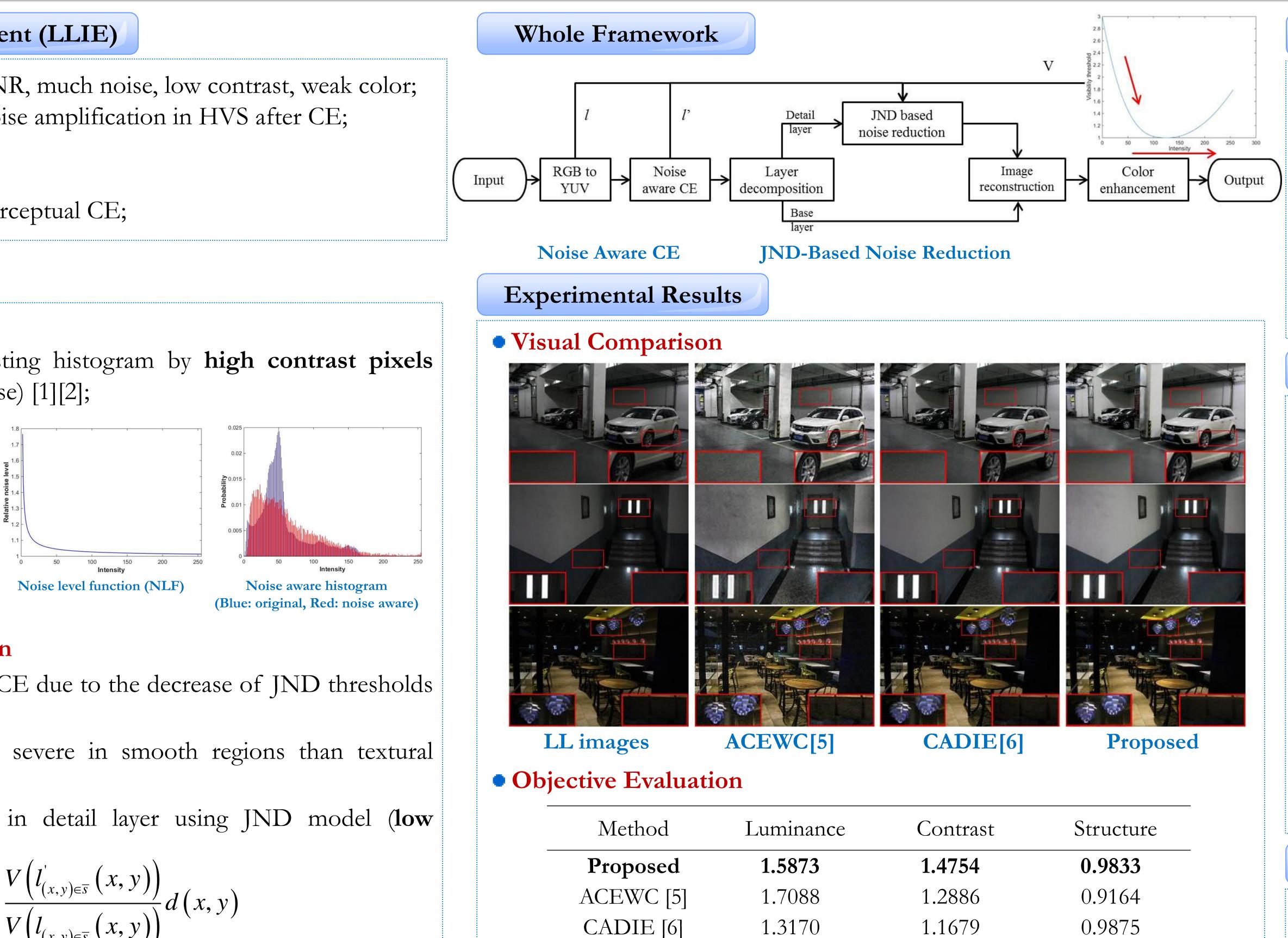


Low Light Image Enhancement (LLIE)

- Low light condition: Low SNR, much noise, low contrast, weak color;
- LLIE: Over-enhancement, noise amplification in HVS after CE;

• Our approach:


- 1) Two-step noise suppression;
- 2) Adopt NLF and JND for perceptual CE;

Proposed Method

• Noise Aware CE

- Noise aware histogram: Adjusting histogram by high contrast pixels from NLF (not corrupted by noise) [1][2];

$$p(I) = \frac{\sum_{(x,y)\in B_{I}} l(x,y)}{\sum_{(x,y)\in S} l(x,y)}$$

where $S = \{(x,y): c(x,y) > n(x,y)\}$
 $B_{I} = \{(x,y)\in S: I = 0,1,...,255\}$

- Global CE by AGCWD [3]

• JND-Based Noise Reduction

1) Noise becomes obvious after CE due to the decrease of JND thresholds (luminance adaptation);

2) Noise amplification is more severe in smooth regions than textural regions (contrast masking);

- We perform noise reduction in detail layer using JND model (low **contrast pixels**) as follows [4]:

$$d_{out}(x, y) = e \cdot \frac{V(l'_{(x, y) \in \overline{s}}(x, y))}{V(l_{(x, y) \in \overline{s}}(x, y))} d(x, y)$$

Low Light Image Enhancement Based on **Two-Step Noise Suppression**

Haonan Su and Cheolkon Jung

School of Electronic Engineering, Xidian University, China

ontrast	Structure	
4754	0.9833	-
2886	0.9164	
1679	0.9875	_

• LLIE based on two-step noise suppression; • Noise aware CE for high contrast pixels based on noise aware histogram;

• JND-based noise reduction for low contrast pixels using JND model (JND from luminance adaptation; Detail layer) • Experiment results demonstrate that the proposed method **successfully**

enhances contrast in low light images while minimizing noise amplification.

References

[1] G. Eilertsen, R. K. Mantiuk, and J. Unger, "Real-time noise-aware tone mapping," ACM Trans. *Graph*, vol. 34, no. 6, pp. 1–15, Nov. 2015. [2] X. Liu, M. Tanaka, and M. Okutomi, "Practical signal dependent noise parameter estimation from a single noisy image," IEEE Transactions on Image Processing, vol. 23, no. 10, pp. 4361-4371, Oct. 2014.

[3] S.-C. Huang, F.-C. Cheng, and Y.-S. Chiu, "Efficient contrast enhancement using adaptive gamma correction with weighting distribution," IEEE Transactions on Image Processing, vol. 22, no. 3, pp. 1032–1041, Mar. 2013.

[4] X. H. Zhang, W. S. Lin, and P. Xue, "Improved estimation for just-noticeable visual distortion," Signal Processing, vol. 85, no. 4, pp. 795–808, Oct. 2005.

[5] A. Loza, D. R. Bull, and P. R. Hill, "Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients," Digital Signal Processing, vol. 23, no. 6, pp. 1856–1866, Jun. 2013.

[6] A. R. Rivera, B. Ryu, and O. Chae, "Content-aware dark image enhancement through channel division," IEEE Transactions on Image Processing, vol. 21, no. 9, pp. 3967–3980, Sep. 2012

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 61271298) and the International S&T Cooperation Program of China (No. 2014DFG12780).

