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Atrial Fibrillation & ECG Monitoring

< Atrial Fibrillation (AF) is the most common cardiac arrhythmia
< Increases the risk of stroke by 5-fold [1]
+ Electrocardiography (ECG) is used in AF detection
+ ECG-based AF detection algorithms [5][6]

% Wireless ECG monitoring system is the key of home care for AF patients
< Wireless Sensors — Hub — Cloud & Doctor
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% Sensor: Random sampling N-dim x by sensing matrix ® — M-dimy (M <N)

< Recelver: Reconstruct signal x form measurement y
< [1-Minimization: Basis Pursuit (BP) [8], Orthogonal Matching Pursuit (OMP)
< x needs to be sparse in specific sparsifying basis W, Xyx1 = Yyxp&px1
< State-of-the-art takes Discrete Wavelet Transform (DWT) as sparsifying basis [4]

< ECG on DWT is not sparse enough — Kt —=M > 0(K - log(N/K)) [2] — M1
— Low compression ratio and bad energy efficiency
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Dictionary Learning (7
< Training data T can be represented by linear combination of
dictionary W with sparse coefficients C
< Solve mm Z[ |t; — e, H2+/1Hc Hl] T
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Reconstruction Performance of CS-based ECG
Compression with Different Spasifying Basis

<+ Compare the proposed trained personalized basis with common
predefined basis DWT [4]
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Compressive Sensing for ECG MOI‘IitOI’ilﬁ'-I*g

% Traditional measured-and-compressed ECG monitoring suffer from
high power consumption
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< Low-power compressive sensing (CS) based ECG monitoring system [4]
for AF detection
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% Proposed CS-based ECG monitoring system with built-in AF detection
ECG Signal
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Proposed CS-based ECG Monitoring Systel;i‘
with Built-in AF Detection

< Phase 1: Separate training data into AF and normal ECG waveform.
Applied dictionary learning to generate ¥, ,, = [1111‘:’;’” Wi;}

< Phase 2: AF detection in CS reconstruction stage

Phase 1: Off-line DL
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Built-in AF Detection in CS Reconstruction
< Sparse Representation Classifier (SRC) in face recognition
< Test sample as a sparse linear combination of trained dictionary
< Sparse solution via [*-Minimization
< CS reconstruction using [*-Minimization — Detect AF (Classifier)
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Performance of Built-in AF Detection
< A paroxysmal AF patient in MIT-BIH Long-Term AF who has both
normal ECG and AF ECG
Someitivity — # of AF segments detected as AF
enstivity = Total AF segments(labels in database)
Sooci ficity — # of Normal segments detected as Normal
pecificity = Total Normal segments(labels in database)
AF ECG, if Is4F ||, = ||s™ormat|
normal cAFY — 2
Detect(s %) Normal ECG, if ||s*F|l; < [|s™™|,
__CR | 70% | 80% | 90%
85.4% 92.4% 96.0%
Specificity 85.6% 86.0% 97.2%
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