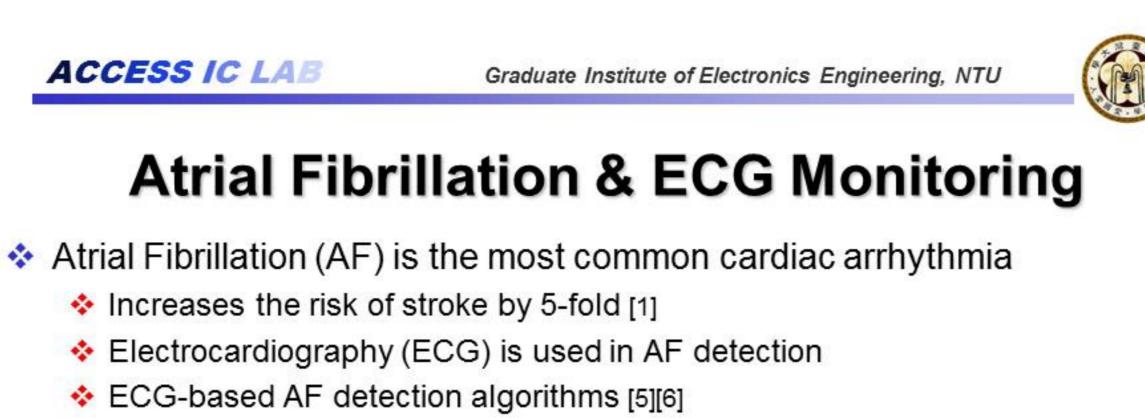
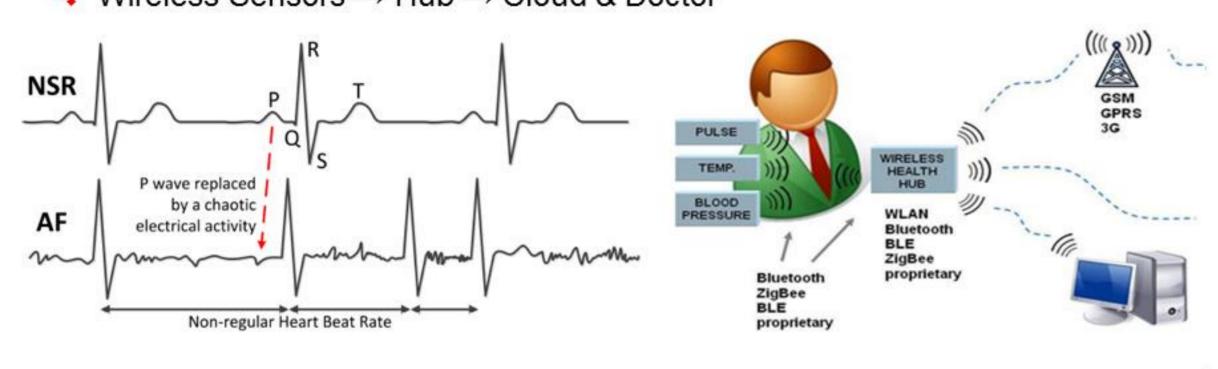
Compressive Sensing Based ECG Monitoring with Effective AF Detection

Hung-Chi Kuo, Yu-Min Lin and An-Yeu (Andy) Wu email: charleykuo@access.ee.ntu.edu.tw



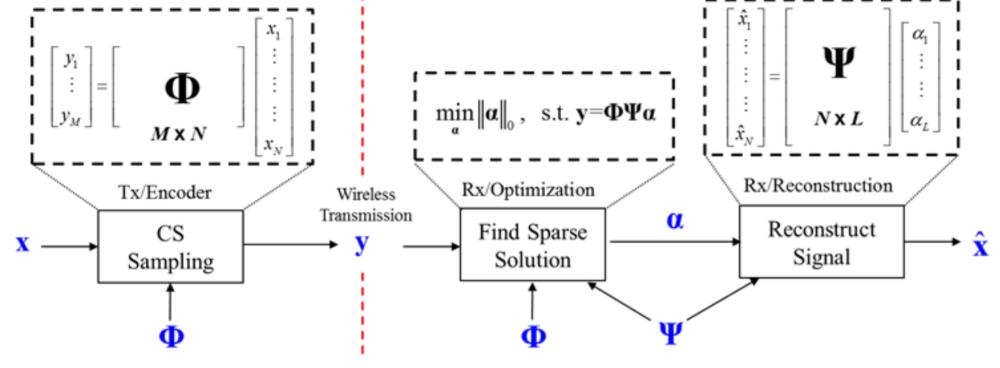
- Wireless ECG monitoring system is the key of home care for AF patients
 - ❖ Wireless Sensors → Hub → Cloud & Doctor



ACCESS IC LAB

Graduate Institute of Electronics Engineering, NTU

Introduction to Compressive Sensing



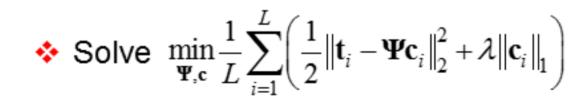
- Sensor: Random sampling N-dim x by sensing matrix $\Phi \to M$ -dim y (M < N)
- Receiver: Reconstruct signal x form measurement y
 - ❖ l¹-Minimization: Basis Pursuit (BP) [8], Orthogonal Matching Pursuit (OMP)
 - x needs to be sparse in specific sparsifying basis Ψ , $x_{N\times 1} = \Psi_{N\times P}\alpha_{P\times 1}$
 - State-of-the-art takes Discrete Wavelet Transform (DWT) as sparsifying basis [4]
 - **\$\leftrightarrow\$** ECG on DWT is not sparse enough \rightarrow K $\uparrow \rightarrow M > O(K \cdot log(N/K))$ [2] \rightarrow M \uparrow → Low compression ratio and bad energy efficiency

ACCESS IC LAB

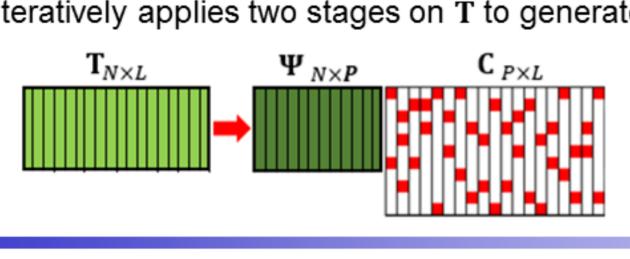
Graduate Institute of Electronics Engineering, NTU

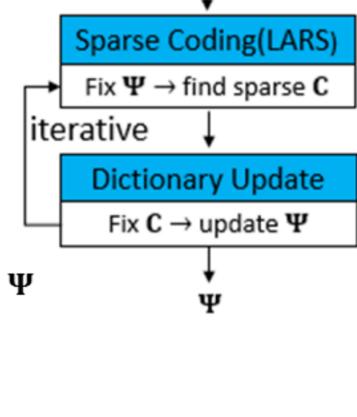
Dictionary Learning [7]

Training data T can be represented by linear combination of dictionary Ψ with sparse coefficients C



- Two stage procedure
 - Sparse coding
 - Basis Pursuit Denoising (BPDN)
 - Dictionary update
 - Online updating
 - Iteratively applies two stages on T to generate Ψ





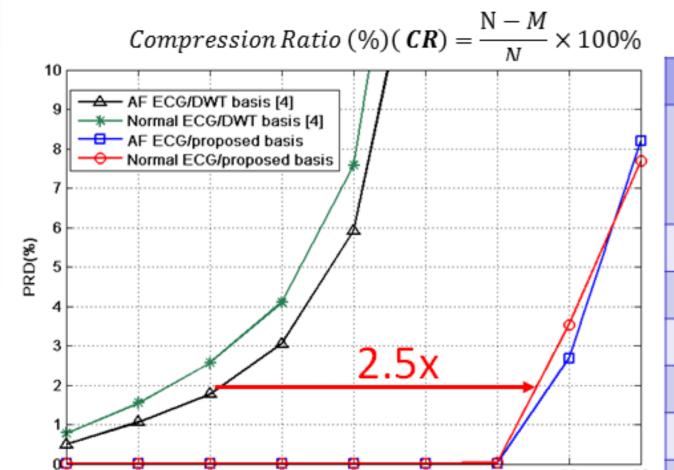
ACCESS IC LAB

Graduate Institute of Electronics Engineering, NTU

Reconstruction Performance of CS-based ECG Compression with Different Spasifying Basis

Compare the proposed trained personalized basis with common predefined basis DWT [4]

Percantage Root mean square Distance $(PRD) = \frac{\|\mathbf{x} - \hat{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2} \times 100\%$ [11]



Compression Ratio(%)

Parameter Settings		
Input Data Type	ECG from MIT-BIH Long- Term AF Database	
Sampling Frequency	(LTAFDB) [10] 256 Hz	
# of Training Vectors (L)	2500	
Input Dimension (N)	256	
# of Dictionary Atoms (P)	512	
Sampling Matrix	Random Gaussian Matrix	
Trials	1000	
	7	

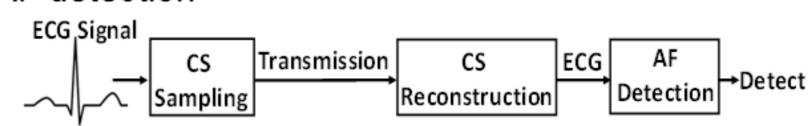
ACCESS IC LAB

Graduate Institute of Electronics Engineering, NTU

Compressive Sensing for ECG Monitoring

Traditional measured-and-compressed ECG monitoring suffer from high power consumption

Low-power compressive sensing (CS) based ECG monitoring system [4] for AF detection



Proposed CS-based ECG monitoring system with built-in AF detection

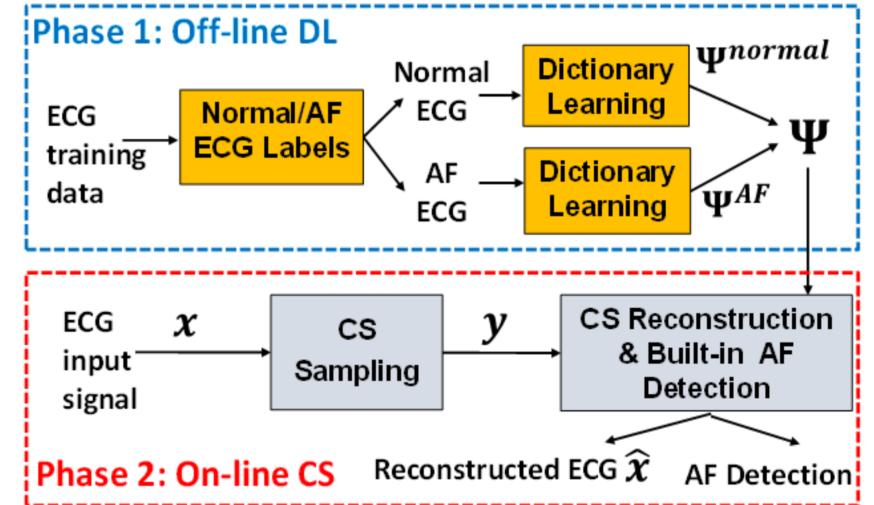
ACCESS IC LAB

Graduate Institute of Electronics Engineering, NTU

Proposed CS-based ECG Monitoring System with Built-in AF Detection

Phase 1: Separate training data into AF and normal ECG waveform. Applied dictionary learning to generate $\Psi_{N\times 2P} = |\Psi_{N\times P}^{Normal} \Psi_{N\times P}^{AF}|$

Phase 2: AF detection in CS reconstruction stage

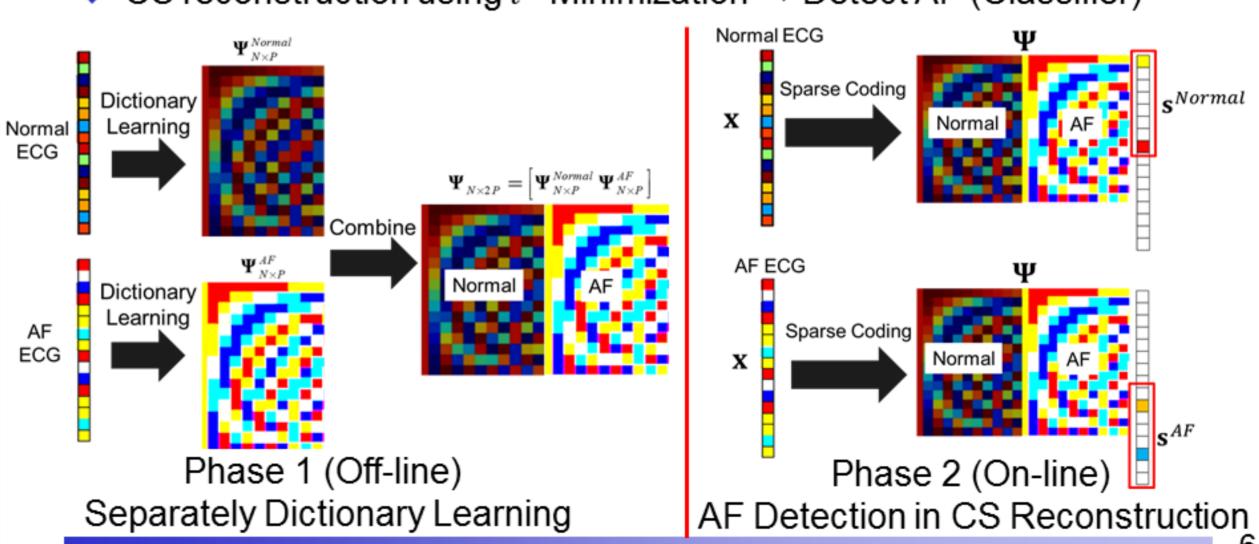


ACCESS IC LAB

Graduate Institute of Electronics Engineering, NTU

Built-in AF Detection in CS Reconstruction

- Sparse Representation Classifier (SRC) in face recognition
 - Test sample as a sparse linear combination of trained dictionary
 - ❖ Sparse solution via l¹-Minimization
- \bullet CS reconstruction using l^1 -Minimization \to Detect AF (Classifier)



ACCESS IC LAB

Graduate Institute of Electronics Engineering, NTU

Performance of Built-in AF Detection

A paroxysmal AF patient in MIT-BIH Long-Term AF who has both normal ECG and AF ECG

 $Sensitivity = \frac{\# of \ AF \ segments \ detected \ as \ AF}{Total \ AF \ segments(labels \ in \ database)}$

 $Specificity = \frac{\# \ of \ Normal \ segments \ detected \ as \ Normal}{Total \ Normal \ segments(labels \ in \ database)}$

 $Detect(\mathbf{s}^{normal}, \mathbf{s}^{AF}) = \begin{cases} AF \ ECG, & if \|\mathbf{s}^{AF}\|_{2} \ge \|\mathbf{s}^{normal}\|_{2} \\ Normal \ ECG, if \|\mathbf{s}^{AF}\|_{2} < \|\mathbf{s}^{normal}\|_{2} \end{cases}$

CR	70%	80%	90%
Sensitivity	85.4%	92.4%	96.0%
Specificity	85.6%	86.0%	97.2%