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Université de Toulouse/ISAE-Supaéro

Abstract
In statistics, the concept of a concomitant, also called the induced order statistic,
arises when one sorts the members of a random sample according to
corresponding values of another random sample. Indeed, multivariate order
statistics induced by the ordering of linear combinations of the components arises
naturally in many instances. As a contribution, we provide a general second-order
statistical prediction of concomitant of order statistics for multivariate normal
distribution, generalizing earlier works. We exemplify its usefulness in parametric
inference via an example related to deterministic estimation.

On ordered maximum likelihood estimates (MLEs): case of a single
parameter

Let us consider the observation model formed from a linear superposition of M
individual signals and noise:

y (l) = H (θ)x (l) + v (l) , 1 ≤ l ≤ L, y (l) ∈ CN , xl ∈ CM , (1)

H (θ) = [h (θ1) , . . . ,h (θM)] and h ( ) is a vector of N parametric functions
depending on a parameter θ, v (l) are i.i.d. Gaussian complex circular noises.

Since (1) is invariant over permutation of signal sources amplitude x (l), i.e. for
any permutation matrix P i ∈ RM×M :

y (l) = (H (θ)P i) (P ix (l)) + v (l) ,

it is well known that (1) is an ill-posed unidentifiable estimation problem.

Definition: the ordered values of a sample of observations are called the order
statistics of the sample: if θ = (θ1, θ2, . . . , θM)T is a random vector, then

θ(M) =
(
θ(1), θ(2), . . . , θ(M)

)T
denotes the vector of order statistics induced by θ

where θ(1) ≤ θ(2) ≤ . . . ≤ θ(M).

(1) can be regularized by imposing the ordering of the unknown parameters θm:
θ , θ(M).Therefore in the MSE sense, the correct statistical prediction is given

by E

[(
θ̂(m) − θm

)2
]
, 1 ≤ m ≤M .

Under reasonably general conditions on the observation model, MLEs are
asymptotically Gaussian distributed when the number of independent
observation tends to infinity.

Nevertheless a close look at the derivations of these results reveals an implicit
hypothesis: the asymptotic condition of operation considered yields resolvable
estimates, what prevents from estimates re-ordering. Therefore, under this
implicit hypothesis θ̂(M) = θ̂.

However when the condition of operation degrades, distribution spread and/or

location bias of each θ̂m increase and the hypothesis of resolvable estimates
does not hold any longer yielding observation samples for which θ̂(M) 6= θ̂.

Asymptotic conditional model with 2 sources: θ̂ ∼ N (θ,CRBθ)

If CRBθ = σ2
(
(1− ρ) I2 + ρ121

T
2

)
, then σdθ̂ =

√
2σ2 (1− ρ) and:

MSE
[
θ̂(m)

]
, E

[(
θ̂(m) − θm

)2
]

= V ar
[
θ̂m

]
− σ2

dθ̂
τh (τ ) , (2a)

where τ = (θ2 − θ1) /σdθ̂, h (y) = E
[
v1{v≥y}

]
− yP (v ≥ y), v ∼ N (0, 1). An

interesting feature is the MSE shrinkage factor:

MSE
[
θ̂(m)

]
/V ar

[
θ̂m

]
= 1− 2 (1− ρ) τh (τ ) . (2b)

High resolution scenario: 2 tones of equal power with opposite frequencies where
the observation model (1) is deterministic: a (θ)T =

(
1, ej2πθ, . . . , ej2π(N−1)θ

)
,

N = 8, L = 2, θ2 − θ1 = 1
12N , Cv = I2, Cx = SNR

N

((
1 + 1

8

)
I2 − 1

8121
T
2

)
where SNR is measured at the output of the frequency matched filter.
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On ordered MLEs: case of a vector of parameters
If H (θ)→H (Θ) = [h (θ1) . . . h (θM)] where h ( ) is a vector of N
parametric functions depending on a vector of P unknown parameters
θ ∈ Ω ⊂ RP , Θ = [θ1 . . . θM ], (1) is still invariant over permutation of signal
sources amplitude x (l).

(1) is regularized by imposing the ordering of the unknown parameters {θm}Mm=1.

A natural ordering of {θm}Mm=1 arises in the computation of MLEs. For
instance, if (1) is a Gaussian conditional model:

Θ̂ =
[
θ̂1 . . . θ̂M

]
= arg max

Θ

{
ΠH(Θ)R̂y

}
, ΠA = A

(
AHA

)−1
AH, (3a)

which can be solved only by numerical search techniques.

A commonly used search technique is the conversion of a PM -dimensionnal
search grid over ΩM into a 1-dimensionnal search grid. For example, if P = 2
and θ ∈ Ω = [a1, b1]× [a2, b2], a rectangular search grid over Ω is:

G =

{(
a1 + i1δ1

a2 + i2δ2

)
,

∣∣∣∣ δ1 = (b1 − a1) /I1, 0 ≤ i1 ≤ I1

δ2 = (b2 − a2) /I2, 0 ≤ i2 ≤ I2

}
(3b)

and convert each θ ∈ G into a linear search index s = i1 + (I1 + 1) i2.

Therefore, in practice (3a) becomes:

Θ̂ = Θ
(
ŝ(M)

)
, ŝ = arg max

s

{
ΠH(Θ(s))R̂y

}
, (3c)

which, as well, solves the issue of model identifiability.

On concomitant and ordered MLEs
Definition: Let us consider M random vectors with P components: {θm}Mm=1.
Let Θ = [θ1 . . . θM ]. If:

s =
(
θT1 a, . . . ,θ

T
Ma
)T

= ΘTa, a ∈MR (P, 1) , (4a)

then, the concomitants of s(M) =
(
s(1), . . . , s(M)

)
are defined as:

Θ[M ] =
[
θ[1] . . . θ[M ]

]
| θ[m] = θm′ ⇔ s(m) = sm′. (4b)

medskip

If δ1 and δ2 are small enough, then:

s ' θTa− s0, a
T = (1/δ1, (I1 + 1) /δ2) , s0 = a1/δ1 + (I1 + 1) a2/δ2. (5)

Since the ordering does not depend on s0, Θ̂ = Θ
(
ŝ(M)

)
are induced order

statistic of ŝ(M), that is concomitants of ŝ(M).

Asymptotic conditional model with 2 sources (cont.)
Let us consider a radar system consisting of a 1-element antenna array receiving
scaled, timedelayed, and Doppler-shifted echoes of a known complex bandpass
signal e (t) e−j2πfct, where fc is the carrier frequency.

A standard observation model of a radar antenna receiving a pulse train of I
pulses of duration δt0 and bandwidth B, with a pulse repetition interval δt is
given by (1) where L = 1, N = bδt/Bc, θT = (τ, ω), h (θ) = ψ (ω)⊗ φ (τ ),
ψ (ω)T =

(
1, . . . , ej2πω(I−1)δt

)
, φ (τ )T =

(
e (−τ ) , . . . , e

(
N−1
B − τ

))
, τ and ω

denoting the delay and the Doppler-shift associated to a target.

The MLEs of Θ are asymptotically efficient and Gaussian, and for 2 targets:

CvΘ̂
= CRBvΘ

= 2Re
{
J (Θ)�

((
xT1x

∗
1

)
⊗ 12×2

)}−1
, vΘ = vec (Θ) ,

where J (Θ) is given in [Menni et al].

We consider a high resolution scenario in terms of θ, that is a small
Doppler-Shift dω = 1/ (12I) (I = 8) and a small delays difference
dτ = 1/ (8B) (δt0 = 32/B). e (t) is a linear chirp.

The empirical MSE are assessed with 105 Monte-Carlo trials from the normally
distributed vector associated with the asymptotic behavior of
vΘ̂ ∼ N (vΘ,CRBvΘ

). The theoretical MSE is computed from [Paper, (9)].
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Figure: Average MSE shrinkage factor
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